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Abstract: Insect farming is gaining attention as a promising area for exploring probiotic bacteria,
which can benefit both insect health and various industries. Silkworm farming is a key industry
in Thailand; however, challenges such as disease susceptibility and optimising growth require
innovative solutions for sustainable practices. Our study addresses this by assessing lactic acid
bacteria (LAB) in native Thai silkworm faeces, which accumulate as natural by-products during the
rearing process. We conducted biochemical tests, including those for catalase, haemolytic activity,
bile salt tolerance, antimicrobial activity, antibiotic susceptibility, and cell surface hydrophobicity,
along with taxonomic classification. Out of 102 isolates, eight potential probiotics were selected, with
five showing strong probiotic traits like acid and bile salt tolerance and cell surface hydrophobicity,
enhancing gut survivability. These isolates also displayed antagonistic activity against pathogens
like Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa. Safety
assessments confirmed their safety, with no haemolytic activity and sensitivity to antibiotics like
chloramphenicol and amoxicillin. These LAB isolates (SP04, SP06, SP44, SP64, and SP67), identified
as Enterococcus faecalis strain NBRC 100481, show promise as in vitro probiotics for silkworm rearing,
calling for further in vivo evaluation.

Keywords: rearing optimisation; alternative protein source; insect biotechnology; artificial diet;
entomophagy; lactic acid bacteria; lactobacillus characteristics; probiotics; sericulture; microbial ecology

1. Introduction

As the global population continues to increase, the popularity of insects for both food
and feed applications is steadily increasing. This trend is gaining momentum because of
their remarkable nutritional profile and sustainable production practices, making insects a
compelling solution to the challenges posed by the growing world population [1]. Insect
farming may not only support protein self-sufficiency but can also offer novel means
for organic waste management and the generation of value-added products, including
fertilisers from rearing residues [2]. Bombyx mori (Lepidoptera: Bombycidae; Linnaeus,
1758) is one of the most important farmed insects in Thailand [3]. Throughout its life cycle,
the silkworm undergoes various stages, starting as an egg, progressing through five larval
instars, transforming into a pupa, and finally emerging as an adult silk moth (Figure 1). The
polyvoltine silkworm can be reared year-round and is primarily found in tropical regions,
such as Thailand. Beyond its traditional use in silk production, B. mori serves as a valuable
insect model in life sciences and plays an important role in antiviral agent screening (e.g.,
silkworm–baculovirus infection model) [4] and in environmental monitoring [5], and also
as food [6] and feed [7].
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Figure 1. (A) Silkworm (Bombyx mori) life cycle and (B) faeces harvested under aseptic conditions in 
a laminar flow cabinet. 

Only the monophagous larvae of B. mori exclusively feed on mulberry (Morus spp.) 
leaves, generating faeces that are rich in nutrients and microorganisms [8]. This waste ma-
terial represents a significant by-product of silkworm rearing and is produced in large 
quantities in Southeast Asian countries, including Thailand. Silkworm faeces, rich in 
(plant) nutrients and mixed with undigested substrate residues (frass), are used as organic 
fertilisers and in biogas production [9–11]. In Thailand, silkworm frass serves as a vital 
fertiliser for mulberry plantations, offering organic nutrients and showcasing sustainable 
agricultural practices. China has leveraged silkworm faeces in traditional medicine, em-
phasising their high fat, protein, and amino acid contents [12]. Reports indicate its use in 
pharmaceutical supplements and the food industry [13], such as oral iron supplementa-
tion, to ameliorate iron deficiency associated with anaemia [14]. Moreover, silkworm fae-
ces have been shown to have antiviral and anti-inflammatory effects and can be used to 
treat symptoms related to rheumatoid arthritis [6]. Silkworm faeces primarily consist of 
organic matter and ash, constituting about 84–90% and 16–20% of their biomass, respec-
tively [15]. In particular, faeces from silkworms reared on a natural mulberry leaf diet 
show an enriched content of amino acids, carbohydrates, and lipids [16]. 

Insects are generally considered a rich source of probiotic microorganisms that reside 
in their guts, where they provide metabolic support and defence mechanisms that support 
insect health [17]. These microbes are promising targets for biotechnological applications 
and have previously been isolated based on their strong cellulolytic [18], amylolytic [18], 
and xylolytic [19] properties. A metagenomic study by Yeruva et al. [20] revealed diverse 
patterns of microbial communities across various silkworm breeds, highlighting the need 
for further in-depth characterisation of silkworm-derived probiotics. 

This study focused on the potential of lactic acid bacteria (LAB) isolated from faeces 
of a native Thai silkworm strain, considering the beneficial probiotic qualities of many 
LABs. Dong et al. [21] revealed that B. mori reared on fresh mulberry leaves had a higher 
bacterial diversity in their guts than those reared on an artificial diet. LAB, particularly 
those from the Lactobacillus genus, are widely acknowledged for their positive impact on 
host health, interacting with the gastrointestinal mucosa, stimulating the immune system, 
and decreasing pathogen infections [22]. Bermudez-Brito et al. [23] demonstrated and 
summarised six major mechanisms of action of probiotics: (a) enhancement of the 
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Only the monophagous larvae of B. mori exclusively feed on mulberry (Morus spp.)
leaves, generating faeces that are rich in nutrients and microorganisms [8]. This waste
material represents a significant by-product of silkworm rearing and is produced in large
quantities in Southeast Asian countries, including Thailand. Silkworm faeces, rich in
(plant) nutrients and mixed with undigested substrate residues (frass), are used as organic
fertilisers and in biogas production [9–11]. In Thailand, silkworm frass serves as a vital
fertiliser for mulberry plantations, offering organic nutrients and showcasing sustainable
agricultural practices. China has leveraged silkworm faeces in traditional medicine, em-
phasising their high fat, protein, and amino acid contents [12]. Reports indicate its use in
pharmaceutical supplements and the food industry [13], such as oral iron supplementation,
to ameliorate iron deficiency associated with anaemia [14]. Moreover, silkworm faeces
have been shown to have antiviral and anti-inflammatory effects and can be used to treat
symptoms related to rheumatoid arthritis [6]. Silkworm faeces primarily consist of organic
matter and ash, constituting about 84–90% and 16–20% of their biomass, respectively [15].
In particular, faeces from silkworms reared on a natural mulberry leaf diet show an enriched
content of amino acids, carbohydrates, and lipids [16].

Insects are generally considered a rich source of probiotic microorganisms that reside
in their guts, where they provide metabolic support and defence mechanisms that support
insect health [17]. These microbes are promising targets for biotechnological applications
and have previously been isolated based on their strong cellulolytic [18], amylolytic [18],
and xylolytic [19] properties. A metagenomic study by Yeruva et al. [20] revealed diverse
patterns of microbial communities across various silkworm breeds, highlighting the need
for further in-depth characterisation of silkworm-derived probiotics.

This study focused on the potential of lactic acid bacteria (LAB) isolated from faeces
of a native Thai silkworm strain, considering the beneficial probiotic qualities of many
LABs. Dong et al. [21] revealed that B. mori reared on fresh mulberry leaves had a higher
bacterial diversity in their guts than those reared on an artificial diet. LAB, particularly
those from the Lactobacillus genus, are widely acknowledged for their positive impact
on host health, interacting with the gastrointestinal mucosa, stimulating the immune
system, and decreasing pathogen infections [22]. Bermudez-Brito et al. [23] demonstrated
and summarised six major mechanisms of action of probiotics: (a) enhancement of the
epithelial barrier, (b) increased adhesion to the intestinal mucosa, (c) inhibition of pathogen
adhesion, (d) competitive exclusion of pathogenic microorganisms, (e) production of
antimicrobial substances, and (6) modulation of the immune system. Therefore, defining
probiotic properties involves multiple screening criteria, such as tolerance to low pH and
bile salts, inhibition of pathogens, cell surface hydrophobicity, safety assessments based on
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haemolytic activity, susceptibility to antibiotics, and the potential to induce host immune
responses [24,25]. Bacteria belonging to the enterococci genus are widely recognised for
their probiotic benefits and play a crucial role as food additives for human consumption [26].
Specifically, E. faecalis isolated from the meconium of newborns possesses notable probiotic
properties suitable for applications that foster human health [27]. Enterococci have been
extensively used to promote animal health and husbandry practices [28]. As feed additives,
enterococci contribute to the induction of the immune system, thereby enhancing resistance
against pathogens and supporting overall health.

Given the medicinal properties of silkworm faeces, this study aimed to isolate and
screen LAB from the larval faeces of a Thai B. mori strain, with a focus on characterising
their probiotic potential.

2. Materials and Methods
2.1. Silkworm Rearing and Harvesting of Fresh Faeces

Silkworm eggs of a Thai strain were purchased from a silkworm farm in the Kudrung
District, Mahasarakham Province, Thailand. The eggs were incubated at 25–26 ◦C for 10 days.
After hatching, the larvae were fed with mulberry leaves thrice a day (at 06:00, 12:00, and
18:00). Faecal samples were collected from 100 larvae on day 4 of the 5th instar (Figure 1A)
under sterile conditions in a laminar flow cabinet to avoid cross-contamination (Figure 1B).

2.2. Isolation of Lactic Acid Bacteria (LAB) and Assessment of Acid Tolerance

The inoculum was prepared by mixing 10 g of silkworm faeces with 90 mL of sterile
0.9% saline solution. De Man–Rogosa–Sharpe (MRS) broth (pH 2.5) was inoculated with
100 µL of the silkworm faeces suspension and incubated at 37 ◦C for 2 h to determine
the acid tolerance of lactic acid bacteria [29]. After the acid treatment, the samples were
serially diluted from 10−1 to 10−4. Each dilution was plated in four replicates by spreading
100 µL on MRS agar (pH 6.2) supplemented with 1% CaCO3 and 0.004% bromocresol
purple (BCP). The plates were incubated at 37 ◦C for 48 h under anaerobic conditions using
an Anaeropack® system (Mitsubishi Gas Chemical Co. Inc., Tokyo, Japan). LAB colonies
exhibiting characteristic morphological features and producing a yellow colour from BCP
were selected for the screening of probiotic properties. Of the 102 colonies, 74 changed their
colour to yellow and were surrounded by a clear zone.

2.3. Gram Staining and Catalase Test

Gram staining was conducted by transferring a bacterial culture onto a glass micro-
scope slide using a sterilised inoculation loop and smearing it with water. The culture was
stained with crystal violet for 1 min, followed by fixing with iodine dye for an additional
minute. Discolouration was achieved by washing with 70% ethanol. Finally, the culture was
counterstained with safranin for 30 s and then rinsed with water. Morphological features
of the bacteria were observed under a light microscope at 40× magnification.

For the catalase test, the bacterial culture was smeared onto a dry and cleaned slide
using a sterilised inoculating loop, and a drop of hydrogen peroxide was added to the
culture. Immediate observation of bubbles indicated a positive catalase reaction, whereas
the absence of bubbles indicated a negative catalase reaction. Only colonies showing
gram-positive and catalase-negative reactions were selected. The selected colonies were
then evaluated for probiotic properties and stored at −20 ◦C in MRS broth containing 20%
glycerol for further studies.

2.4. Haemolytic Activity

The haemolytic activity of LAB was assessed following a modified protocol using
human blood [30,31]. Overnight cultures of each LAB isolate in MRS broth were streaked onto
Columbia agar plates (BD Difco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 5% human blood. The plates were incubated at 37 ◦C for 48 h. Subsequently, the bacterial
plates were examined for the presence of haemolytic zones, categorised as alpha haemolysis



Agriculture 2024, 14, 924 4 of 12

(greenish zone), beta haemolysis (clear zone), or gamma haemolysis (no haemolysis) around
the LAB colonies. Only the strains exhibiting gamma haemolysis were considered safe. The
selected LAB isolates were then subjected to antibiotic assays, with Staphylococcus aureus
serving as a positive control, showing a visible clear zone for beta haemolysis [32].

2.5. Bile Salt Tolerance Assay

The survival of LAB under acidic conditions with bile salts was also investigated. The
bile salt tolerance of the isolates was evaluated by adding 0.3% (w/v) bile salt (Oxgall,
Himedia, Maharashtra, India) to MRS broth (pH 2.5). For the test, a 5 mL culture of LAB
isolates grown overnight in MRS broth at 37 ◦C under anaerobic conditions was used.
Viable LAB colonies were determined using serial dilution and plate counting. MRS broth
without LAB was used as a negative control. Survival rate was assessed by contrasting
counts of viable colonies (mean log(cfu)/mL) before and after exposure to bile salts using
the following Equation (1):

Survival rate (%) =
log value o f cells survived

log value o f initially viable cells
× 100 (1)

2.6. Cell Surface Hydrophobicity Assay

To assess the bacterial adhesion of LAB isolates to solvents, cell surface hydrophobicity
was determined following established protocols [33,34]. LAB suspensions were prepared
in phosphate-buffered saline (PBS) and centrifuged at 6500 rpm for 5 min. The PBS-
resuspended LAB were mixed with an equal volume of physiological saline to obtain an
optical density of 0.5 at a wavelength of 600 nm (OD600). Three mL of this suspension was
transferred to an autoclaved tube and 1 mL of xylene was added. After shaking on a vortex
shaker for 1 min, the tubes were left undisturbed for 15 min to facilitate phase separation.
Subsequently, the absorbance of the aqueous phase was measured at a wavelength of
600 nm. Hydrophobicity was calculated from three replications, representing the percent
decrease in the OD of the original bacterial suspension due to LAB partitioning into the
hydrocarbon layer [35]. The hydrophobicity of the cells was measured at OD600, and the
cell surface hydrophobicity ratio (%) was calculated using the following Equation (2) [29]:

Cell surface hydrophobicity(%) =
OD600 be f ore mixing − OD600 a f ter mixing

OD600 be f ore mixing
× 100 (2)

2.7. Evaluation of LAB Isolates against Bacteria Pathogens

The antibacterial activities of the isolates against four human pathogens (Escherichia
coli ATCC 25922, Salmonella typhimurium ATCC 14028, Pseudomonas aeruginosa, and Staphy-
lococcus aureus ATCC 25923) were assessed using the agar spot method [36]. Sixteen LAB
isolates were spotted onto the surface of MRS agar and incubated at 37 ◦C for 24 h under
anaerobic conditions. After culturing, 50 µL of each bacterial pathogen was inoculated into
a Brain Heart Infusion (BHI, 0.5% soft agar) and poured onto the MRS agar plates. The
plates were incubated at 37 ◦C for another 24 h, and inhibition activity was observed. The
diameter of the clear zone for each isolate against each indicator pathogen was measured,
and inhibition levels were classified as (−) for no inhibition, (+) for 0.5–6 mm, (++) for
7–12 mm, and (+++) for more than 12 mm inhibition [37].

2.8. Sensitivity of LAB to Antibiotics

Antibiotic susceptibility was assessed using the Bauer–Kirby disk diffusion method [38]
with commercial antibiotic discs (Himedia, Maharashtra, India). Five antibiotics, penicillin
(10 units), chloramphenicol (30 µg), gentamicin (10 µg), tetracycline (30 µg), and amoxi-
cillin (30 µg), were tested [39,40]. LAB isolates were swabbed on Mueller–Hinton agar, and
antibiotic discs were placed on the plate before incubation at 37 ◦C for 24 h. The inhibition
zone around each antibiotic disc was measured, and LAB sensitivity was categorised as
sensitive (“S”), intermediate (“I”), or resistant (“R”) based on the enclosed zone size inter-
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pretative charts (Himedia): amoxicillin (S ≥ 18 mm; I = 14–17 mm; R ≤ 13 mm), chloram-
phenicol (S ≥ 18 mm; I = 13–17 mm; R ≤ 12 mm), gentamicin (S ≥ 15 mm; I = 13–14 mm;
R ≤ 12 mm), penicillin (S ≥ 15 mm; R ≤ 14 mm), and tetracycline (S ≥ 15 mm; I = 12–14 mm;
R ≤ 11 mm).

2.9. Colony PCR, Sanger Sequencing, and Taxonomic Identification

For a single colony PCR, a mixture of 0.5 µL 27F forward primer (5′-AGAGTTTGATCA
TGGCTCA-3′), 0.5 µL 1492R reverse primer (5′-TACGGTTACCTTGTTACGACTT-3′), 0.5 µL
2% BSA, and 12.5 µL RedTaq Polymerase 2× master mix (containing 1.5 mM MgCl2, VWR,
Radnor, PA, USA) was prepared and combined with 11 µL PCR-grade H2O. Bacterial
isolates selected from the enrichment plates were carefully transferred into reaction tubes
containing 25 µL of the PCR mix using sterile pipette tips. Colony PCR was performed
according to the thermocycler program described in Table S1. Subsequently, the PCR
products were purified using the GeneElute PCR Clean-up Kit (Sigma-Aldrich, St. Louise,
MO, USA). Prior to Sanger sequencing of the entire 16S rRNA gene, 2 µL of the 27F forward
primer was added to each purified PCR product. The resulting full-length 16S reads were
subjected to nucleotide BLAST search for taxonomic assignment. All the samples were
amplified and sequenced in duplicate for more reliable verification.

2.10. Statistical Analysis

The experiments were carried out in triplicate (n = 3), and the results are presented as
the mean ± standard deviation. Data analysis was performed in R (v. 4.3.1) using one-way
analysis of variance, and statistical significance was defined as p < 0.05. Prior to analysis,
normality of the data was checked using the Shapiro–Wilk test. Tukey’s Honest Significant
Difference post hoc test was used for pairwise comparisons of groups.

3. Results
3.1. Morphological and Physiological Study of Lactic Acid Bacteria

Through morphological analysis of the colonies, 102 LAB colonies derived from the
faeces of a local Thai silkworm strain were identified. Initial characterisation of these
isolated LAB involved criteria such as gram positivity, exhibiting either cocci or rod shapes
(Figure 2A,B) and demonstrating survival in an acidic environment (pH 2.5) through the
hydrolysis of CaCO3 combined with bromocresol purple on MRS agar. Notably, 74 isolates
exhibited morphological features indicative of their potential as probiotic candidates,
specifically for gram-positive bacteria. Additionally, all isolated strains demonstrated
defence mechanisms against oxidative stress, as evidenced by a catalase-positive reaction.
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3.2. Haemolytic Activity, Bile Salt Tolerance, and Cell Surface Hydrophobicity

To assess the safety of the selected LAB, the haemolytic reaction was determined
by streaking LAB on Columbia blood agar containing 5% (v/v) human blood. Out of
the 74 isolates, 49 isolates did not exhibit a halo zone, confirming that they were gamma
haemolytic. In contrast, a clear haemolytic zone (beta haemolysis) was observed around
S. aureus, which served as positive control.

Among the LAB isolates, SP04, SP06, SP44, SP64, and SP67 displayed notable acid and
bile salt tolerance (Figure 3A). After 24 h in bile salt conditions, their survival rates were
26.3 ± 0.6%, 51.2 ± 1.0%, 12.8 ± 0.3%, 72.9 ± 0.8%, and 33.3 ± 0.0%, resulting in highly
significant differences across the isolates (F(4,10) = 3938, p < 0.001 ***).

Our study revealed that LAB isolates exhibited hydrophobicity ranging from 41%
to 65% on average (Figure 3B). Notably, we observed significant variation among repli-
cates within each isolate yet detected no significant differences across distinct isolates
(F(4,10) = 0.141, p = 0.94).
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3.3. Selected LAB Isolates against Bacterial Pathogens

The selected LAB isolates were subjected to an agar spot test on MRS agar against
indicator bacteria, demonstrating their inhibitory effects on pathogenic strains. The degree
of inhibition, measured by the clear zone, varied between 4.2 mm and 19.8 mm, as detailed
in Table 1.

Table 1. Antimicrobial testing of selected lactic acid bacteria (LAB) against pathogenic bacteria in MRS
broth (pH 6.5) (n = 3). Evaluation based on Vélez et al. (2007) [37]: 0.5–6 mm = (+), 7–12 mm = (++),
>12 mm = (+++).

LAB Isolate
Pathogenic Bacteria [ø mm]

Escherichia coli Staphylococcus aureus Salmonella typhimurium Pseudomonas aeruginosa

SP04 5.3 ± 0.5 (+) 12.8 ± 1.0 (+++) 19.8 ± 0.8 (+++) 14.5 ± 0.0 (+++)
SP06 4.8 ± 0.3 (+) 12.8 ± 0.8 (+++) 18.5 ± 1.4 (+++) 14.2 ± 0.3 (+++)
SP44 13.1 ± 0.3 (+++) 4.2 ± 0.5 (+) 14.2 ± 0.5 (+++) 6.6 ± 0.4 (++)
SP64 12.9 ± 0.5 (+++) 7.3 ± 0.4 (++) 19.7 ± 1.1 (+++) 11.3 ± 0.4 (++)
SP67 17.9 ± 0.9 (+++) 9.0 ± 0.3 (++) 16.3 ± 0.3 (+++) 13.3 ± 0.7 (+++)
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3.4. Antibiotic Susceptibility Test

To confirm the suitability of probiotic candidates for use as feed supplements, it is
crucial to evaluate the sensitivity of the isolates to a relevant range of antibiotics of both
human and animal importance. The five selected LAB isolates were subjected to antibiotic
susceptibility testing using various antibiotics. In line with the guidelines by the European
Food Safety Authority, two antibiotic groups were considered: (I) agents inhibiting cell
wall synthesis (amoxicillin and penicillin) and (II) agents inhibiting protein synthesis
(chloramphenicol, gentamicin, and tetracycline). Notably, the tested isolates demonstrated
sensitivity to amoxicillin, chloramphenicol, penicillin, and tetracycline as denoted by the
letter ‘S’ (sensitive). Four out of five isolates, however, showed resistance (‘R’) against
gentamicin, and for isolate SP44, this antibiotic showed intermediate inhibitory (‘I’) effects,
as detailed in Table 2.

Table 2. Antibiotic susceptibility of selected lactic acid bacteria (LAB) isolates. Data on the measured
inhibition zones are expressed as mean diameter ± standard deviation (n = 3). Susceptibility was
determined based on the size interpretative charts enclosed by the antibiotic disc manufacturer
(Himedia, Maharashtra, India). (R) = resistant, (S) = sensitive, (I) = intermediate inhibition.

LAB Isolate
Antibiotic Susceptibility Zone of Inhibition (mm)

Amoxicillin Chloramphenicol Gentamicin Penicillin Tetracycline

SP04 27.3 ± 1.9 (S) 20.7 ± 1.0 (S) 12.2 ± 0.3 (R) 19.5 ± 1.3 (S) 23.3 ± 0.8 (S)
SP06 29.2 ± 0.3 (S) 20.3 ± 0.8 (S) 12.3 ± 0.6 (R) 19.8 ± 0.6 (S) 23.8 ± 2.4 (S)
SP44 28.0 ± 0.5 (S) 20.0 ± 1.0 (S) 13.3 ± 0.6 (I) 19.3 ± 0.6 (S) 23.3 ± 0.8 (S)
SP64 27.7 ± 1.5 (S) 19.5 ± 0.9 (S) 12.8 ± 1.4 (R) 18.8 ± 0.3 (S) 22.7 ± 0.8 (S)
SP67 27.8 ± 0.8 (S) 20.0 ± 0.0 (S) 12.3 ± 0.6 (R) 20.3 ± 1.0 (S) 19.3 ± 4.6 (S)

3.5. Genetic Identification

The sequences derived from Sanger sequencing of the five isolates were all identified
as Enterococcus faecalis strain NBRC 100481 (Accession no.: NR_113902.1). Comprehensive
information, including raw sequences and detailed nucleotide BLAST output, is provided
in Table S2.

4. Discussion

In the context of sericulture, silk production has been promoted and developed to
support a circular economy. Recently, the silk-producing industry has found applications
beyond traditional clothing, extending to uses in human food and animal feed [41]. As
a by-product of insect mass-rearing, insect faeces have gained popularity, particularly as
a novel agricultural fertiliser, due to their vast microbial and nutritional diversity and
soil-enhancing properties [42,43]. In this study, we aimed to harness the potential of waste
from silkworm farming by isolating LAB from the faeces of a Thai strain of B. mori and
investigate its potential use as probiotics. The results indicated that these LAB isolates met
the probiotic criteria established by Bermudez-Brito et al. (2012) [23]. Preliminary isolation
tests were conducted using MRS nutrient media (MRS agar and MRS broth) at an acidified
pH of 2.5. These tolerant isolates were further assessed for their probiotic properties. Five
selected isolates demonstrated bile salt hydrolase activity and the ability to adhere to
the epithelial cells. They were sensitive to amoxicillin, chloramphenicol, penicillin, and
tetracycline, but showed resistance to gentamicin, indicating that their growth could be
inhibited by a large selection of antibiotics if necessary. Based on their properties, the
isolated LAB can be considered potential candidates for probiotics in animal feed [44].
However, caution should be paid to resistance to, e.g., aminoglycoside antibiotics such
as gentamicin, which is frequently observed in LAB isolated from farmed animals [45].
The exposure of these animals to antibiotics increases the selective pressure on microbial
communities in the host guts, favouring the proliferation of resistant microbes and driving
the acquisition of resistances via horizontal gene transfer [45]. Artificial environments
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such as insect mass-rearing facilities may have similar effects on microbial populations.
Although LAB, such as enterococci isolated from wild animals, also demonstrate resistances
to antibiotics; farmed animals, pets, and humans constitute their primary reservoir [46].
Therefore, special attention should be directed towards monitoring the spread of resistances
and associated virulence factors.

Sanger sequencing identified the isolates as Enterococcus faecalis strain NBRC 100481, a
microaerophile mesophilic representative of the family Enterococcaceae. Recently, E. faecalis
was found to be an effective antagonist against infections in B. mori caused by Microsporidia,
including Nosema bombycis, the pathogen responsible for Pébrine disease in their larvae [47,48].
Enterococci are also capable of causing opportunistic infections [49] but are typically
known for their probiotic effects when present as commensal gut colonisers. In healthy
silkworms, enterococci make up a considerable amount of the gut microbiota, indicating
their relevance to host health [50]. However, other representatives of enterococci such as
Enterococcus mundtii, can have adverse effects on B. mori larvae and cause the flacherie
disease [51], while the same species has been proven to protect another insect species,
Tribolium castaneum, against Bacillus thuringiensis [52].

A critical aspect of probiotic bacteria is their ability to survive in acidic conditions in
the gut. In our investigation involving 102 LAB isolates, all met the primary criteria for
probiotic properties, displaying gram-positivity and growth in MRS broth with an acidic
pH of 2.5 to a neutral pH of 6.7. These findings align with previous reports emphasising
the importance of LAB viability in low-pH environments [53–55].

In this study, 102 different isolates were identified, of which 74 were found to be gram-
positive and tested negative for catalase, as indicated by the absence of bubbles [56]. Out
of these 74 isolates, 49 were cocci-shaped and exhibited gamma haemolysis. Additionally,
bacterial cell surface hydrophobicity, assessed through auto-aggregation, demonstrated
strong hydrophobicity to the hydrocarbon xylene, further supporting their potential as
indigenous probiotics in the host gut [57,58].

Considering the importance of antibiotic resistance in probiotics, our results showed
that the five LAB isolates identified as probiotic candidates exhibited susceptibility to
common antibiotics [6]. This suggests that probiotics isolated from the faeces of silkworm
larvae are safe for use in silkworm farming, benefiting from their origin in the native
host’s gut environment and potentially offering advantages over probiotics isolated from
other sources [59]. Moreover, these five isolates exhibited strong inhibitory effects on
common pathogens such as E. coli, S. aureus, S. typhimurium, and P. aeruginosa. Enterococci
are ubiquitous and can act as both probiotics or opportunistic pathogens depending on
the strain and environmental conditions [60], though the specific mechanisms of their
pathogen inhibition were not covered in this study. However, previous research has
shown that E. faecalis can effectively colonise the intestine and exhibits immunoregulatory
activities, including the activation of immune system cells [60]. Effective probiotics typically
adhere to the gut lining, providing a barrier and excreting antimicrobial peptides against
pathogens [61].

In this study, LAB were isolated from the faeces of a polyvoltine Thai silkworm strain.
Previous research has shown a higher prevalence of Enterococcus sp. in polyvoltine than
in bivoltine silkworms [20]. Probiotic criteria include the ability to reduce midgut pH
from alkaline to acidic, which is a key factor in preventing infectious diseases caused by
microorganisms, such as viruses, bacteria, and microsporidia.

Lately, lactic acid bacteria have been increasingly used as supplements and food
additives in animals, including insects [19,62]. However, the mechanisms and interactions
between silkworms and LAB remain unclear, and further research of LAB survival in the
gut is necessary. Our results suggest that LAB supplementation may offer opportunities to
enhance health while potentially reducing pathogens, particularly in preventing viral and
bacterial infections in silkworms, an area with limited reports to date.
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5. Conclusions

Our study was designed to capitalise on the utilisation of waste from silkworm
farming. Lactic acid bacteria isolates were specifically selected from the faeces of a local
strain of B. mori in Thailand for their promising probiotic potential. The five selected
isolates demonstrated bile salt hydrolase activity and the ability to adhere to epithelial
cells. Notably, all five isolates were sensitive to amoxicillin, chloramphenicol, penicillin,
and tetracycline and exhibited resistance only to gentamicin. Considering their favourable
probiotic properties, the selected LAB isolates were deemed potential candidates for use as
probiotics in animal feed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture14060924/s1, Table S1: Cycler program used for colony
PCR with 27F and 1492R primers to amplify the 16S rRNA gene of bacterial isolates; Table S2:
Representative sequences of the five isolates generated by Sanger sequencing using 27F and 1492R
primers and their corresponding nucleotide BLAST results for taxonomic identification.
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