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Abstract
Animals frequently display aggressive behaviour, for example, when competing
for food. Aggression is influenced by various extrinsic and intrinsic factors such as

temperature, the microbiome, and genetics. However, we currently lack
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understanding what factors cause an animal to start aggression. Here, we use an
ant species to test if chemical, microbiome, genomic, and/or transcriptomic traits
correlate with the start of aggression and the reactions to it, that is, reacting
aggressively or peacefully. We found nine bacterial operational taxonomic units,
mutations in two genes, and eight differentially expressed genes, which were
positively or negatively associated with the start of aggression or reactions to it.
These traits are mainly linked to hormone signalling and neurological and
synaptic functions. The results indicate that multiple traits, possibly acting in
concert, affect the start of aggression and reactions to it. We speculate that such
traits could promote aggression and could thus play important evolutionary roles.

Keywords
Whole-genome sequencing, transcriptomics, gut microbiome, cuticular
hydrocarbons, behaviour, start of aggression, 7etramorium alpestre

Introduction

Aggressive behaviour among individuals of the same species is a frequently
observed behaviour in animalsl. It is a vital aspect of animals’ fitness and

survival and often context-dependent?3. For example, it can occur during food or
mate competition, territory defence, and offspring protection against predators4.
Such adaptive aggression3> can lead to increased fitness. For instance, winners
of fights can consume more or higher-quality food or obtain mates for
reproductionl. However, aggression can incur harms such as stress and energy or
time costs. At its worst, it can also be deadly® by increasing the risk of injuries
and/or exposure to predators’.

Various extrinsic and intrinsic factors can lead to aggression. Extrinsic factors
are, among others, higher ambient temperature and can lead to increased
aggression in humans and animals8°. Intrinsic factors such as experience (i.e.,
repeated stimuli such as winning aggressive encounters)19, neurochemical
factors (i.e. changes in serotonin, dopamine, or octopamine)3, or differentially-
expressed genes (DEGs)3 influenced by the gut microbiome can also promote
aggressiont1-13,

Despite these promising insights, our understanding of the underlying
mechanisms that lead to the start of aggression (i.e., when two individuals meet
and one starts aggressive behaviours such as fighting) is limited. Nevertheless,
some drivers are known: for example, individual experiencel#13, previous

experience in winning a fight'é, or recognising another individuall’ can affect
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whether an individual starts aggression. In particular, animals such as insects use
chemical cues!8 (cuticular hydrocarbons; CHCs) to recognise and attack
enemies!?. Besides experience and recognition, the microbiomel1-13.20-22  genetic
changes (e.g., mutations in genes?3:24), and/or DEGs (e.g., in neuronal or synaptic
functions!’) may also affect whether individuals start aggression.

Ants are known for their aggressive behaviour. For example, California
harvester ants (Pogonomyrmex californicus) often fight for over 30 minutes, and
such fights often result in fatal outcomes with one or both workers dying?>. On
the other end of this spectrum are ‘peaceful’ ants, which frequently refrain from
fighting individuals from different colonies of the same species. Peacefull
behaviour is less frequently observed, but is known from several species such as
Lasius austriacus®®, Lasius flavus?’, and Tetramorium alpestre®. However, even in
such predominantly peaceful species, aggression can be observed, leading to the
unresolved question of what factors lead to the start of aggression28.2°,

Here, we used the high-elevation ant species 7. alpestre to test whether
chemical, microbiome, genomic, and/or transcriptomic traits correlate with the
start of aggression in ants, specifically workers. This species displays a
behavioural continuum ranging from aggression to peacefulness?30.31, We
collected workers from three colonies each from three previously described
populations?30.31, They either comprise single-queened and aggressive colonies
(SQ-A), single-queened and non-aggressive colonies (SQ-N), or multiple-queened
and non-aggressive colonies MQ-N (i.e., supercolonies consisting of multiple
colonies connected over a large area3?, N, = 9, Fig. 1A-B, Tab. S1). We
conducted recognition (own colony against alien colony) and aggression assays
and selected individual worker ants that displayed either of the following
behavioural states, started aggression, reacted aggressively, or reacted
peacefully for chemical, microbiome, genomic, and transcriptomic analyses (Fig.
1C). We then integrated results from these analyses in a final multinomial logistic
regression to assess their joint impact on the behavioural states.

Results
Aggression tests, and selection of workers for whole-genome and -
transcriptome sequencing

To select workers for whole-genome and transcriptome sequencing that
displayed either of the three behaviours, started aggression, reacted
aggressively, and reacted peacefully, we conducted standardised one-on-one
worker aggression tests® among all nine colonies. We analysed the behaviour of
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each individual worker and calculated a behaviour index. By conducting an
Analysis of Variance (ANOVA), we found that the behaviour differed among the
behavioural states (Fig. 2A; ANOVA: df=2, F-value=78.02, p-value <0.001). To
confirm that peaceful behaviour has lower aggression values, we pairwise
compared the behavioural states using a Tukey Honest Significant Test: Workers
that started aggression and ones that reacted aggressively had significantly
higher aggression values throughout the confrontations than workers that
reacted peacefully (started aggression vs reacted peacefully, p-value < 0.001;
reacted aggressively vs reacted peacefully, p-value < 0.001). However, workers
that started aggression and ones that reacted aggressively had similar
aggression values (started aggression vs reacted aggressively, p-value = 0.597).
The within-colony behaviour (control; not shown) did not reveal any aggression.
Additionally, workers preferred own odours over alien odours or a control (for
details, see the section “Recognition assays”in the Supplementary Results).
Based on the aggression tests and ANOVA, we selected 85 and 109 workers for
whole-transcriptome and whole-genome sequencing, respectively.

Cuticular hydrocarbon (CHC) analysis

The CHC bouquet did not differ starkly among colonies and populations. We
found 78 compounds in the odour bouquets (hydrocarbon chain length C12 to
C35; GC-MS analyses of CHC-extracts of five workers pooled per colony). From
these, 63 compounds were present in all samples (Tab. S2). Visualised
multidimensionally (PCA, Fig. 2B), colonies of the single-queened and aggressive
population SQ-A (colonies SQ-A2, SQ-A5 SQ-A6) overlapped with colonies of the
single-queened and non-aggressive population SQ-N (SQ-N1, SQ-N4, SQ-N6) and
of the multi-queened and non-aggressive population MQ-N (MQ-N1, MQ-N2, MQ-
N5), but population MQ-N did so the most. Using the CHC compound data, we
conducted a hierarchical cluster analysis and found that CHC extracts from SQ-N
and MQ-N were more similar to each other and partially clustered together (Fig.
S1). In contrast, samples from SQ-A5 were more similar to colonies from
populations SQ-N and MQ-N than to SQ-A2 and SQ-A6 colonies.

Whole-genome and whole-transcriptome analyses

Observed heterozygosity and pairwise genomic differentiation were similar
among samples, but relatedness was higher in multiple-queened and non-
aggressive colonies. After quality checks and filtering, 184,145 and 69,191 Single
Nucleotide Polymorphisms (SNPs) were kept in whole-genome and whole-
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transcriptome VCEF files, respectively (109 and 83 samples, respectively). The
mean observed heterozygosity for whole-genome samples was 0.30 (min = 0.23,
max = 0.48) and for whole-transcriptome samples 0.15 (min = 0.001, max =
0.37). The pairwise genomic differentiation values (Weir-Cockerham Fs7) were
very similar across populations with 0.005 for populations SQ-A:SQ-N, 0.004 for
SQ-A:MQ-N, and 0.008 for SQ-N:MQ-N. Visualised multidimensionally (linkage
disequilibrium-pruned PCA with DNA samples; Fig. 2C), the multiple-queened and
non-aggressive population MQ-N separated from the other two single-queened
populations SQ-A and SQ-N. Samples from population SQ-N clustered together,
while colonies from population SQ-A appeared well separated. Samples from
population MQ-N clustered together regardless of colony identity. Mean within-
colony relatedness was slightly higher in populations SQ-A and SQ-N than in
population MQ-N (SQ-A: 0.57, SQ-N: 0.63; MQ-N: 0.33; Fig. 2D, Tab. S3). The
colony queen number (estimated using the relatedness values) was
approximately one in all colonies of populations SQ-A and SQ-N and at least two
in all colonies of population MQ-N (Tab. S3).

We identified three SNPs associated with the behavioural states using a
Genome-wide Efficient Mixed Model Association (GEMMA) analysis. We assessed
associations between SNPs as well as Insertions/Deletions (‘InDels’) and three
SNPs (henceforth SNP1-3; Fig. S2). SNP1 is in the sequence of the gene called
“Mediator of RNA polymerase Il transcription subunit 26” (located at Scaffold 11,
site 2457277). SNP2 is in the sequence of an unknown gene (located at Scaffold
165; site 28,302). SNP3 is in the sequence of the gene “gastrulation-defective”
(gd. located at Scaffold 185, site 110,741).

The allelic states of the genomic SNPs differed between the behavioural states.
We visualised the homozygous and heterozygous allelic states for the three
behavioural states multidimensionally (PCA; Fig. 3A). The behavioural state
started aggression revealed a larger variation and had slightly different allelic
states in the SNPs compared with the other two behavioural states. We assessed
if the count of the reference or alternative alleles for each specific SNP was
different across rows (Pearson’s Chi-squared test for count data with simulated p-
value and 2000 Monte Carlo replicates) and subsequent post-hoc test. For SNP1,
36 out of 41 (88%) workers that started aggression, 35 out of 39 workers (90%)
that reacted aggressively, and 26 out of 29 (90%) workers that reacted
peacefully were homozygous for the reference allele (Fig. S3; Tab. S4). For SNP1,
the allele counts were not different across behavioural states (Fig. S3, one-SNP1;
x2 = 0.09, p-value = 1.000). For SNP2, 18 out of 41 (43%) workers that started
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aggression were homozygous in the SNP state, while 2 out of 39 (5%) workers
that reacted aggressively and 2 out of 29 (7%) workers that reacted peacefully
were homozygous in the SNP state. More individuals that started aggression were
homozygous for the reference allele (SNP2: x2 = 22.98, p-value < 0.001; see Tab.
S4 for pairwise comparisons). For SNP3, 30 out of 41 (73%) workers that started
aggression were heterozygous for the SNP state, 10 out of 39 (26%) workers that
reacted aggressively, and 11 out of 29 (38%) workers that reacted peacefully
were heterozygous for the behavioural state. More individuals that started
aggression were heterozygous for the reference allele (SNP3: x2 = 19.381, p-
value < 0.001).

Differential gene-expression analyses
We identified several differentially-expressed genes (DEGs) associated with the
behavioural states. We pairwise compared all behavioural states (i.e., started
aggression (Nantsseq = 31), reacted aggressively (Nantsseq = 28), and reacted
peacefully (Nantsseq = 23). In each comparison, we found ~17,000 DEGs or
isoforms, of which roughly 100 were significant (for details on the comparisons,
see the section “Differentially-expressed genes” in the Supplementary Results).
In the comparison between ants that started aggression and reacted
aggressively, we found 13 significantly up-regulated genes and 36 down-
regulated genes in workers that started aggression (false-discovery rate (FDR)-
corrected for multiple testing; Fig. S4A, volcano plot - red dots). When comparing
ants that started aggression with workers that reacted peacefully, we found 28
and 61 genes that were significantly up- and down-regulated, respectively. In the
comparison between ants that reacted aggressively and reacted peacefully, no
gene was significantly up- or down-regulated in workers that started aggression.
We found 30 up-regulated and 28 down-regulated genes that were shared
across all behavioural comparisons (<0.05 -corrected genes with known functions
were used; Fig. 3B). For the 30 up-regulated genes, five genes (CG3800, CG3902,
CDase, Rhp, and Moe; Tab. S5) were exclusively found in the comparison started
aggression vs reacted aggressively, 22 genes (CG34367, CG13625, CG3655,
apolpp, CG14687, CG3655, Gat, Sur-8, mRpL9, CG9175, CG6656, Phm, Socs16D,
Vav, CG3860, CG32225, CG9426, alph, CG16974, CG10483, AP-2alpha, and bchs;
Tab. S5) exclusively in the comparison started aggression vs reacted peacefully,
and three (CG3061, svr, and Syt4, Tab. S5) in both comparisons started
aggression vs reacted aggressively and started aggression vs reacted peacefully.
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No gene was found to be differentially expressed in the comparison reacted
aggressively vs reacted peacefully.

For the 28 down-regulated genes, eight genes (BicC, CG3238, Exo84, PlexA,
Tretl-1, Taf5, Doa, and Vps35; Tab. S5; Fig. 3B) were found in the comparison
started aggression vs reacted aggressively, 19 in the comparison started
aggression vs reacted peacefully (CG3822, Rdl, RFC3, CG10431, Cdep, Dscaml,
CG7492, CG6910, snRNP-UI-70K, CG31550, /(1)G0196, CG9346, CG32486, agt,
Gcn5, baz, CG13366, U2arf50, and CG8108, Tab. S5), and one (yellow-d2, Tab. S5)
was found in both comparisons started aggression vs reacted aggressively and
started aggression vs reacted peacefully. The log,fold changes of these genes
ranged between -3.06 and -0.15 for started aggression vs reacted peacefully and
between -1.60 and -0.15 for started aggression vs reacted peacefully (Tab. S5).
Of these genes, two were highly expressed: gene CG3800 was highly up-
regulated (log,fold change = 2.48) and gene B/icC was highly down-regulated
(logofold change = -3.06). All the above-mentioned genes were used for the
multinomial regression analyses (for details, see section below “Analysing
multiple data layers jointly”).

Analysis of high-throughput 16S rRNA gene sequencing data

To assess whether the laboratory maintenance affected the microbiome and
whether the microbiome (i.e., bacteria and archaea) is associated with the three
behavioural states, 16S rRNA gene sequencing was conducted with 49 workers

III

from the populations SQ-A and SQ-N, and 16 additional “control” samples from SQ-
A and SQ-N (i.e., directly frozen in the field and not used in aggression tests; for
details, see the Materials and Methods section). Subsequently, we conducted a
Principal Coordinate Analysis (PCoA) with these samples. Laboratory maintenance
did not change the bacterial operational taxonomic units (OTUs) composition in the
ants (Fig. S5A). Also, the behavioural states were mixed with control samples (Fig.
S5B). Only samples from one colony (SQ-N6) were separated from the other
samples on the first axis.

Four bacterial genera were frequently found across the data set. From an
average of 116,096 = 20,583 raw reads per sample, 79,844 = 19,799 quality-
filtered reads per sample remained, subsampled to an equal depth of 37,808
reads. After rarefaction, 22,215 unique OTUs were identified, including 264
archaea, 19,773 bacteria, and 2178 unknown OTUs. We excluded OTUs not

classified at the genus level. Of the remaining OTUs, the genera Pseudomonas
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(8.7% relative abundance), Bacteroides (6.1%), Lactobacillus (5.2%), and
Prevotella (4.4%) were found most frequently.

Besides these four bacterial OTUs (Pseudomonas, Bacteroides, Lactobacillus,
and Prevotella), we further calculated the relative frequency for four additional
bacterial genera and one order, namely Acetobacter, Enterococcus,
Fusobacterium, Megamonas, and the order Rhizobiales. These bacteria are also
known to affect behaviour in humans29:33, dogs!?, Drosophil/a'l, and ants!3. The
genus Pseudomonas was most frequent (25.4%, Tab. S6) followed by Bacteroides
(20.7%), Lactobacillus (18.6%), Prevotella (17.0%), Enterococcus (11.3%),
Megamonas (5.4%), Acetobacter (0.7%), Fusobacterium (0.5%), and the order
Rhizobiales (0.3%). Using these bacterial OTU genera, we selected OTUs that had
a frequency of at least 100 across the behavioural states (N=119), thus focusing
on the most frequent OTUs.

With these 119 OTUs, we conducted a sliding-window approach in a
multinomial logistic regression to count how often they were significantly
associated with the behaviour states. Across these models, the most frequent
OTUs (NoTus=58 with a frequency =10) included the genera Bacteroides (25%
relative percentage across 58 models), Lactobacillus (9%), Prevotella (43%),
Pseudomonas (17%), the order Rhizobiales (4%), and the genus Fusobacterium
(1%). We further reduced the OTU number for downstream analyses yielding 18
OTUs (e.qg., using OTUs with a higher or lower frequency than one across the
counts of the behavioural states; for details see “Analysis of 165 rRNA gene-
sequencing data” in the Materials and Methods). With these 18 OTUs, we
assessed whether OTU counts differed among behavioural states by conducting a
generalised linear model and pairwise comparison (“emmeans” package34; Tukey
corrected for multiple testing).

Nine OTUs were significantly associated with the behavioural states, namely
two Bacteroides spp., two Lactobacillus spp., three Prevotella spp., and two
Pseudomonas spp. (Tab. S8, Fig. 3C). In the two Bacteroides species, significantly
more OTU counts occurred in the behavioural state started aggression and
reacted aggressively than in reacted peacefully (OTU 1598) as well as fewer
counts in started aggression than reacted aggressively or reacted peacefully
(OTU 22324). For the genus Lactobacillus, significantly fewer and more OTU
counts occurred in the behavioural state reacted peacefully than in started
aggression or reacted aggressively in Lactobacillus mucosae and in Lactobacillus
sp., respectively. In the three Prevotella and two Pseudomonas species,
significantly more OTU counts occurred in the behavioural state started
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aggression than in the state reacted aggressively and reacted peacefully (OTUs
Prevotella 377, 1887, 20448; Pseudomonas 366, 2442). For the three Prevotella
species, also more OTU counts occurred in the behavioural state reacted
peacefully than in reacted aggressively.

Analysing multiple data layers jointly

We integrated genomic, transcriptomic, chemical, and environmental data layers
in 24 multinomial logistic regression models to assess if they were associated
with the behavioural states. The site-specific environmental variables were
calculated manually or extracted from the WorldClim dataset3> (for details, see
“Environmental variables used in the multinomial regression analyses” in the
Materials and Methods section”). In more detail, we used SNPs, gene-expression
counts, within-colony relatedness, site-specific air temperature, the first PC of the
CHC analysis, soil nitrogen values, mean annual precipitation, precipitation of the
warmest quarter, mean annual temperature, and maximum temperature of the
warmest month as explanatory variables (for details, see Materials and Methods
section “Combining SNPs, DEGSs, CHCs, relatedness, and environmental variables
counts in a multinomial regression").

We used allelic states, normalized expression counts, and continuous
environmental variables as predictors in a single model. We excluded microbiome
data because they were not available for the multiple-queen population MQ-N. In
the models, we used the behavioural state started aggression as the baseline and
run an intercept-only model as reference. To find the best model explaining the
data, we selected various combinations of explanatory variables resulting in 24
models: Models 1-8 used only the four genes that were found in both behavioural
comparisons (genes CG3061, svr, Syt4, yellow-d2), and Models 9-16 and Models
17-24 included either all up-regulated or all down-regulated genes found in the
differential gene expression analysis, respectively. We used log-likelihood ratio
tests to the robustness of the variables.

In the four best-fitting models, we found two SNPs and eight genes that were
associated with the behavioural states. The models were Model 2, 4, 12, and 20,
which included the following SNPs and DEGs: SNP2 and SNP3 (gastrulation-
defective) and DEGs yellow-d2, BicC, Pifl, Exo84, PlexA, KaiR1d, Rdl, and RFC3
(for detailed results, see the supplementary results section “Logistic multinomial
regression analyses” and Tab. 59-17). Although SNP1 was significant in Model 20,
we excluded it because it was not significant in the SNPs-only model. We then
combined the above-mentioned variables (i.e., SNP2, SNP3, yellow-d2, BicC, Pifl,
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Exo84, KaiR1d, RD, RFC3, PlexA) in a final multinomial logistic regression. This
final model explained significantly more variance than the intercept-only model
(Likelihood ratio test of multinomial models, likelihood ratio: 89.73, p-
value<0.001). A goodness-of-fit measure was calculated by comparing the fit of
observed and expected values, and the model displayed a good fit (x2 = 74.89,
df= 4; p-value < 0.001, Residual deviance = 89.23, AIC = 133.23). SNP2 and
SNP3 significantly influenced the behavioural states, as well as genes yellow-dZ,
BicC, Pif1, Exo84, KaiR1d, RD, and RF(C3, but not gene PlexA (Tab. S18). In
contrast, within-colony relatedness, CHCs, and the environmental variables were
never associated with the start of aggression.

The SNPs and DEGs contributed significantly to the behavioural associations,
but the two SNPs and gene BicC contributed the most. Overall, the odds ratios of
the SNPs and DEGs being associated with the behavioural states ranged from -
4.13 to 4.90 (Tab. S18; Fig. 3D). The highest log,-values were found for SNP2,
which were 4.90 times higher for reacted aggressively and 3.80 times higher for
reacted peacefully compared with started aggression. The next highest values
were in BicC, which were 0.6 times higher for reacted aggressively and reacted
peacefully compared with started aggression. The odds ratios that the DEGs
Exo84, yellow-d2, KaiR1d, Pif1, Rdl, and RFC3 were associated with the
behavioural states were approximately 0.01 to 0.4 times higher for reacted
aggressively and reacted peacefully compared with started aggression. For SNP3,
values were -4.1 and -3.8 times lower for reacted aggressively and reacted
peacefully compared with started aggression. The calculated pseudo-R? value
“Nagelkerke” was 0.75. In the pairwise comparison of the behavioural states
(“emmeans”), the mean of started aggression was lower than the means of
reacted aggressively and reacted peacefully (means + confidence intervals
started aggression 0.07 + 0.02-0.12, reacted aggressively 0.38 + 0.26-0.50,
reacted peacefully, 0.55 + 0.42-0.69; contrasts estimate started aggression vs
reacted aggressively. -0.31; df = 22, t-ratio = -5.04, p-value = 0.001; estimate
started aggression vs reacted peacefully. -0.49; df = 22, t-ratio = -6.37, p-
value<0.001), but not for reacted aggressively vs reacted peacefully (estimate: -
0.18; df = 22, t-ratio = -1.521, p-value = 0.303). Additionally, we conducted log-
likelihood ratio tests to evaluate the significance of each focal variables by
comparing a full model and a model that lacked the focal variable. Each focal
variable contributed significantly to the respective model (Tab. S18; all models

converged).
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Gene-enrichment analyses and gene-function predictions of the
identified SNPs and DEGs

We used the identified SNP and DEGs, namely SNP3, yellow-d2, BicC, Pifl, Exo84,
KaliR1d, RD, RFC3, and PlexA, in a gene-enrichment analysis and found that the
identified are linked to depression restoration, synaptic and neurological
functions, aggression, as well as plasticity. We conducted the gene-enrichment
analysis in g:Profiler (using only annotated genes and FDR adjusted with p-
values<0.05) to test whether they were enriched for biological processes,
molecular function, and/or cellular components. We used the fruitfly Drosophila
melanogaster as a background gene set and conducted an unordered query to
analyse whether certain biological pathways or gene sets were overrepresented.
To increase the sample size of the gene-enrichment search, we used all genes
regardless of whether they were up- or down-regulated or from different
comparisons (for details, see the section “ Gene-enrichment analyses with known
genes” in the Supplementary Results). In total, six molecular functions, 12
biological processes, and eight cellular components were enriched (Tab. S19).
The molecular functions can be broadly summarised into signal transduction and
binding and enzymatic and catalytic functions. The biological processes can be
summarised into neural signalling, ion transport dynamics, gene expression
regulation, and DNA replication and elongation. The cellular components can be
summarised into replication functions, vesicle transport, neuronal functions, and
ion channel functions. Overall, we combined them into two categories, namely
neurological and synaptic functions as well as DNA replication, repair, and
genome stability functions (Fig. 3E). The former included the genes BicC, Exo84,
gd (i.e., SNP1 in the gene gd), KaiR1d, PlexA, Rdl, and yellow-d2, while the latter
included Pif1 and RFC3.

Using a gene-prediction analysis, we also identified neurological and synaptic
functions across the SNPs and DEGs. In detail, we used GeneMania3® (FDR <
0.05; including gene PlexA because excluding PlexA only yielded non-significant
results), which predicts gene function and searches for similar functional and
related genes based on the initial gene list to find gene pathways or interactions.
We included the same SNPs and DEGs in two queries, once with and once without
gene gd as it contains a SNP. In the query with gd, we detected five biological
processes and two molecular functions (Tab. S20). The biological processes can
be summarised as regulation during cell division and the molecular functions as
membrane transport functions. In the query without gad, we detected six

biological processes and four molecular functions (Tab. S20). The biological
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processes can be summarised as neuronal signalling and regulation during cell
division and the molecular functions as membrane transport functions, possibly
linked to synaptic activity and signalling.

Discussion

Almost all animals display aggressive behaviour, but our understanding of the
underlying mechanisms that promote the start of aggression is limited. Here, we
integrated, for the first time, chemical, microbiome, genomic, transcriptomic, and
environmental analyses and assessed whether these traits promote the start of
aggression and reactions to it in the ant 7etramorium alpestre. We tested
workers that displayed either of three behavioural states, namely started
aggression, reacted aggressively, and reacted peacefully, identified in the
aggression assays. Using the microbiome data, we discovered nine OTUs across
four bacterial genera, Bacteroides, Lactobacillus, Prevotella, and Pseudomonas,
that were associated with the behavioural states. We also identified three genes
with a SNP each that were associated with the start of aggression (whole-genome
data; GEMMA analysis), namely the gene mediator of RNA polymerase 2
transcription subunit 26 (SNP1), one unknown gene (SNP2), and the gene
gastrulation-defective (SNP3). We also found significantly up-regulated (N=30)
and down-regulated genes (N=28; FDR corrected for multiple testing) when
comparing the state started aggression vs each state reacted aggressively or
reacted peacefully. Finally, we integrated these SNPs, DEGs, as well as
additionally collected colony and environmental variables (e.g., within-colony
relatedness, CHCs, site-specific nitrogen and temperature values) in a
multinomial logistic regression (multiple data layers jointly). We found that SNP2
and SNP3 (in the gene gd) as well as the DEGs BicC, Exo84, KaiR1d, Pifl, PlexA,
Rdl, RFC3, and yellow-dZ2 are associated with the behavioural states, while CHC
and colony and environmental variables were not.

CHC compounds represent population structure but are not associated with the
behavioural states

Using the CHC compounds, genetic differentiation, and relatedness values, we
corroborate the colony and population structure expected at the onset of this
study. The PCA of the CHCs used 63 compounds, which is slightly more than
found in a recent study on this species (Ncycs = 50)°. We expected the single-
gueened colonies to be separated from each other and the multiple-queened
colonies to be mixed among colonies due to lower and higher relatedness,
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respectively. The combined analyses of the PCA of the CHC compounds, the CHC
hierarchical cluster analysis, the genetic differentiation (pairwise Fsr values of the
genomic data), and relatedness values corroborated this expectation. In detail,
workers of the colonies of population SQ-N are related to each other and likely
have only one queen. This also explains the narrow distribution of the CHCs, as
CHC bouquets are genetically determined and environmentally tuned8. Workers
of the colonies of population SQ-A are not or little related and also likely have one
gueen. As a result, the distribution of the CHC bouquet in the PCA is wider.
Workers from colonies of population MQ-N have a higher relatedness scattered
across colonies. This indicated that they likely have multiple, possibly unrelated
gueens. Workers from different queens within the same colony have very
different CHCs leading to a broader variety in PCA of the CHCs.

While the microbiome, SNPs, and DEGs affected the behavioural states
(discussed in the next three sections), the CHC bouquet did not. This is
interesting because CHC differences can cause aggressive behaviour in ants1?
but not necessarily in every ant species3’. Here and in a previous study using this
species?, we did not find any association between CHC differences and
aggression. This could be due to our study design: due to the small size of these
animals, we were only able to use workers either for CHC extractions or for
aggression assays (and subsequent genomic and transcriptomic analyses). By
coincidence, the CHC bouquets of all fighting workers may have been more
dissimilar from each other than the ones of the workers used for CHC analyses.
Apart from this appearing unlikely as a pattern throughout, also a previous study
on this ant? and other ant species?37 used different ants for CHC extractions and
for aggression tests. They found a correlation!® or not37 suggesting that such a
correlation could have been found if CHCs were important drivers of aggression
in this ant. In contrast, this is the second study using this species indicating that
CHC differences are not important for aggression in this species. Even though
CHCs do not seem to elicit aggression in this species, we speculate that it still
uses CHCs for nestmate recognition, but workers simply remain peaceful towards

non-nestmates with different CHC bouquets.

Gut bacteria are associated with the behavioural states

We found nine gut bacteria across four genera, Bacteroides, Lactobacillus,
Prevotella, and Pseudomonas, that were associated with the behavioural states.
The genus Bacteroides is linked with the behavioural states. We found a higher

frequency of one Bacteroides sp. (OTU 1598) in ants that were aggressive
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(started aggression and reacted aggressively) than in ants that reacted
peacefully as well as a higher frequency of one Bacteroides sp. (OTU 22324) in
ants that reacted aggressively and reacted peacefully than in ants that started
aggression. Tillisch et al (2017)29 found that women with a higher Bacteroides
abundance had more dense white brain matter tracts, indicating altered sensory
processing. This may indicate that Bacteroides bacteria affect how ants perceive
other ants and react accordingly. Additionally, Lin et al. 201738 and Strandwitz et
al. 201939 found that a reduced abundance of Bacteroides bacteria in the gut is
possibly linked with depression in humans. In turn, this may indicate that ants
with higher Bacteroides counts were positively stimulated and thus more
proactive and reactive.

We found a lower abundance of Lactobacillus mucosae (OTU 813) in ants that
reacted peacefully, but a higher abundance of Lactobacillus sp. (OTU 21141),
compared with ants that started aggression or reacted aggressively. Recent
studies also found links between Lactobacillus and nestmate recognition in honey
bees40 as well as behavioural changes in dogs!?, Drosophila flies'l, and ants!3.
However, the results are partially contradictory: for example, one study found a
higher Lactobacillus abundance in phobic dogs!?, namely Lactobacillus
plantarum, which has known psychobiotic properties*l. However, another study
on dogs and D. melanogaster males found that the genus Lactobacillus was more
frequently present in aggressive dogs and D. melanogaster malesil, While the
underlying mechanisms remain unclear, a link between Lactobacillus and
behavioural changes seems to appear.

Also the bacteria Prevotel/la can affect behavioural states. We detected a
higher frequency of three Prevotella spp. (OTU 377, 1887, 20448) in ants that
started aggression than ants that reacted aggressively or reacted peacefully as
well as in reacted peacefully than in reacted aggressively. A study in humans
found that women with a higher abundance of Prevotel/la gut bacteria displayed
higher negative affect when shown images with a negative emotional content,
which was associated with both functional and structural differences in the
hippocampus?2?. Speculatively, these associations of Prevotel/la with aggression
may indicate an evolutionarily conserved pathway of these gut bacteria with
negative stimuli, in humans and ants, and possibly other animals.

Lastly, also the genus Pseudomonas is connected with behavioural states. We
found two Pseudomonas spp. (OTUs 366, 2442) that had a higher frequency in
ants that started aggression. To our best knowledge, no study has so far linked
Pseudomonas to behaviours such as aggression. However, other studies have
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linked Pseudomonas strains with, for example, a potential insecticide resistance4?
or metabolising insecticides43. Notably, insecticide often affect neuronal or
synaptic functions. It thus may be that Pseudomonas is connected to behavioural
changes via such a metabolic pathway.

While additional bacteria such as Acetobacter, Enterococcus, Fusobacterium,
or Megamonas have been found to affect behaviour in humans20.33, dogs!2,
Drosophilall, and ants!3, we did not find any association with these bacteria here.

Our gut microbiome results are in line with other research indicating that there
is accumulating evidence of microbiome effects on the recognition and behaviour
of animals such as humans20.22.38.39 dogs12.21, Drosophila'l, cockroaches, locusts,
and termites?! (and references therein), as well as ants!3. For example, studies
also suggests that the microbiome affects the behaviour via the gut-brain
axis12.44: the authors suggest the gut microbiome ‘communicates’ with the
central nervous system in various parallel ways such as the vagus nerve,
signalling mechanisms, and the production of neuroactive chemicals (e.g.,
serotonin, gamma-amino butyric acid ‘GABA’)12:44, In turn, the central nervous
system also communicates with the gut microbiome?!?, creating a feedback loop.
While an overall association seems to emerge, the exact effects of specific
bacteria on their hosts remain to be determined. Thus, further studies are needed
to assess such bacteria-host interactions.

SNPs and DEGs are also associated with behavioural changes
We found one SNP each in two genes as well as eight DEGs associated with
behavioural, neurological, and synaptic functions that may explain the observed
behavioural states. SNP2 is at a site of an unknown gene and will not be
discussed further, while SNP3 is at a site in the gene gd (gastrulation-defective).
For this SNP in the gene gd, more ants that started aggression were
heterozygous at the SNP site. Although we found no direct link between the gene
gd and aggression, we speculate that there may be an indirect link. The
activation of gd leads to the activation of the 7o/ pathway. The 7o// pathway is
conserved and is involved in the development of the dorsal-ventral embryonic
axis#, but it also promotes the expression of the transcription factor nuclear
factor kappa B, which has functional roles in neuroprotection and synaptic
plasticity?4. Gene gd may thus be associated with brain synaptic activity and thus
possibly with the start of aggression.

We further found six down-regulated genes associated with depression
restoration, synaptic and neurological functions, aggression, as well as plasticity.

15



561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

These genes, BicC, Exo84, KaiR1d, Rdl, yellow-d2, and PlexA, are down-regulated
in workers that started aggression (PlexA was kept here as it was driving
significant results in the GeneMania analysis). In more detail, BicCis associated
with depression restoration®, Exo84 with neurite differentiation?’, Ka/R1d with
baseline synaptic transmission48, Rd/with neurotransmission and olfactory
learning4?, yellow-d2 with dopamine receptor signalling>?, and PlexA as a
receptor fir semaphorsin>! (for more details on each gene, see the section “Six
down-regulated genes linked to synaptic functions” in the Supplementary
Discussion). The results indicate these SNPs and down-regulated genes could
affect behavioural states in this ant species. Specifically, their associations with
neurological and synaptic functions could indicate a potential direct link between
them and the start of aggression and reactions to it. Further, they may affect the
behaviour in this ant in a concerted way.

We also found two up-regulated genes associated with DNA repair and
replication. These genes, Pif1 and RFC3, are not directly but indirectly associated
with behaviour. For example, Gidron et al. (2006)>2 found that under specific
conditions and repeated exposure to stressful situations, reactive oxygen species
increased and can yield to DNA damage in animals. It may be that ants that
started aggression were more sensible to stressful situations (e.g., sampling and
laboratory maintenance) leading to an increase in oxidative stress scavenging
mechanisms, which can reduce indices of oxidative stress>3. In turn, this may
explain the up-regulation of such genes. However, further studies need to shed
light on such potential associations.

We acknowledge the possibility that the identified bacteria, SNPs, and/or
DEGs are false positives. However, we argue that this is unlikely because these
bacteria, mutations, and DEGs were identified by using independent datasets,
applying corrections for multiple comparisons to minimise retrieving false
positives, and combining the data sets in a joint analysis (multinomial logistic
regression). We further checked the robustness of the results by dropping focal
variables using log-likelihood ratio tests. In contrast, we argue that the results of
these three independent data sets represent three distinct lines of evidence
suggesting that similar underlying mechanisms can contribute to the start of
aggression or the reaction to it, for example via hormone and synaptic signalling.
The observed behavioural states could thus be affected by these factors in a
concerted way. At the same time, we stress that our results are correlative but
not causal. Additionally, also other factors, such as epigenetic changes not tested
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here, may contribute to the start of aggression and reactions to it. Future studies
should thus test whether the identified gut bacteria and genes are functionally
relevant. This could be tested by conducting aggression tests with ants that have
been fed with these bacteria or with ants in which these known genes are
knocked out, impaired, or over-expressed. It would further be interesting to
ascertain whether the same gut bacteria, genes, or gene homologs are important
for the aggressive or peaceful behaviour in other (social) insects as well.
Additionally, possible effects of epigenetic changes (e.g., DNA methylation,
histone modifications) should be tested.

Aggression and its possible positive effects can be adaptivel#. This is
especially true if starting aggression leads to increased fitness!. The start of
aggression has been loosely associated with individual effects, such as changes
in the gut microbiome!1-13.20-22 ' SNPs in genes?3.24 or DEGs?’. In this study, we
integrated - for the first time to our best knowledge - gut microbiome data with
chemical, genomics, transcriptomics, environmental, and behavioural assays,
using the ant 7. a/pestre. We identified nine gut bacteria, two mutations, and
eight DEGs that are associated with the three behavioural states started
aggression, reacted aggressively, and reacted peacefully. In contrast, chemical
and environmental factors were not associated with the behavioural states. The
nine gut bacteria found are known to influence aggression and other behaviours
in several organisms, for example, via hormone signalling11.21.22.40, The identified
SNPs and DEGs were, among others, associated with neurological and synaptic
functions. Based on these results, we speculate that these three traits can

contribute the start of aggression, possibly in a synergistic mechanism.

M&M

Fieldwork and colony maintenance

Between July 18t and 25t 2018, 500 workers were sampled from three colonies
each in three populations (Ncoonies=9, Tab. S1). The populations were selected
based on preliminary behavioural data (not shown): One population was located
in South Tyrol, Italy, and comprised single-queened and aggressive colonies (“SQ-
A”), one in Tyrol, Austria, comprising single-queened and non-aggressive colonies
(“SQ-N"), and one in Carinthia, Austria, comprising multiple-queened and non-
aggressive colonies (“MQ-N"; potentially supercolonial population). Of these 500
workers, 200 were immediately snap-frozen in the field using a dry shipper
(CY50915D, Thermo-Fisher Scientific Inc., MA, USA) for CHC and molecular
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analyses. The remaining workers were transported alive to a laboratory at the
University of Innsbruck and transferred to polypropylene boxes (10.5 x 10.5 cm;
as of now “colony”) awaiting behavioural assays. These workers presumably
included all polyethism stages31. To prevent workers from escaping, the walls of
the boxes were Fluon-coated (GP1, De Monchy International BV, Rotterdam,
Netherlands). Each box was equipped with soft tissue as a hiding place, two
conical Eppendorf tubes filled with water or with diluted honey water and each
plunged with cotton as a drinking aid, and a frozen Drosophila hydeifruit fly. The
water, honey water, and fruit fly were refilled twice per week and present at all
time ad /ibitum. The boxes were placed in a climate cabinet (MIR-254, Panasonic,
Etten Leur, Netherlands) with constant dark conditions, a humidity of 50-70%,
and at constant 18 °C. Constant 18 °C was selected to acclimatise workers that
originated from slightly different elevations to a similar temperature. Before the
various assays, the colonies were kept in the climate cabinets for two weeks.
Pairwise geographic distances between populations SQ-N:MQ-N (Kuehtai -
Mussen; Fig. 1A) were 140 km, between SQ-A:MQ-N (Penser Joch - Mussen) 125
km, and between SQ-A:SQ-N (Penser Joch - Kuehtai) 40 km calculated using an

online tool (https://www.ibm.franken.de/gps03.html).

Recognition assays

Between August 13t and 20t 2018, we conducted recognition assays to test if
workers recognise and prefer their own colony odour over an alien colony or a
control odour following Steiner et al. (2007)2. For these assays, we extracted
cuticular hydrocarbons (CHCs) from workers of each colony separately using
three different extraction solvents sequentially, starting in 100 ul hexane, then
100 pl ethyl acetate, and lastly 100 pl 96% ethanol (all three Merck, MA, USA)?26,
For the extraction, we transferred the workers into 1.1-ml conic glass vials (CZT,
Kriftel, Germany). Workers remained in each extraction solvent for 90 s before
being transferred to the next. The three solvents should extract as many CHCs as
possible. We then transferred the workers to 96% ethanol, mixed the three
solvents, and stored them at -20 °C until further use. To account for body size
differences, we used 15 workers for each colony from populations SQ-A and SQ-N
and 22 workers for each colony from population MQ-N, which had smaller
workers. In total, we generated nine solvents (one for each colony) to test if
workers prefer their own, alien, or control (a mixture of the three extraction
solvents without CHCs) odour. To do this, we created small filter paper disks (2
cm diameter; 75 g/gm, Altmann Analytik, Minchen, DE) with three 120-degree
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sectors (own, alien, and control sector). Onto the sector “own”, we applied 1 ul of
the extract of the colony to be tested, onto the sector “alien”, 1 ul of the extract
of a different colony from the same population, and onto the sector “control”, 1 pl
of the mixture of extraction solvents without CHCs. We transferred the solvents
onto the paper disks using a 20-ul syringe (Hamilton, NV, USA). After transferring
the solvents onto the papers, the solvents were left to evaporate for three
minutes before we transferred the paper disks to the bottom of small glass vials
(2 cm @). The bottom of each glass vial was covered with 1 ul paraffin oil as a
keeper substance?6. The walls of the glass vials were Fluon-coated to prevent
workers from escaping. After evaporation, we transferred individual workers to
the glass vials, which were covered with tin cans to simulate dark conditions.
Workers were allowed to acclimatise for 15 minutes, after which we lifted the can
for five seconds and noted the sector of the paper disk on which the worker was
sitting. After each observation, we turned the vial 120 degrees and lightly tapped
it thus forcing the worker to move. In each assay, we tested all colonies in a
randomised order. Both conductors and evaluators were blind to the origin of
colonies. We conducted the assays in an air-conditioned room with constant 18
°C resembling the temperature in the climate cabinet. In one run, 36 workers
were tested (four from each colony), and 15 runs were conducted. This procedure
was replicated three times over three days resulting in 1,620 observations, which
were analysed together using a multinomial Goodness-of-Fit test to test if
workers recognise and prefer their own colony odour, an alien colony odour, or a

control odour.

Extraction and analysis of cuticular hydrocarbons (CHCs)

We extracted CHCs from five workers per colony following Krapf et al. (2023)°.
For the extraction, we transferred five workers, which had been immediately
frozen after sampling, to 1.1-ml conic glass vials (CZT, Kriftel, Germany) and
immediately added 100 ul n-pentane (Merck, MA, USA) using a 100-ul syringe
(Hamilton, NV, USA). The CHCs were extracted for three minutes while the glass
vials were being shaken at 450 rpm. After the extraction, we removed the
workers from the vials and transferred them to Eppendorf tubes filled with 96%
ethanol. The vials containing the CHC extracts were sealed until their analysis.
For the analysis, a 7890 B Series gas chromatograph (Agilent, Waldbronn,
Germany) equipped with a flame ionization detector (FID), a nonpolar DB-5
column (30mx0.25mminner diameter, J&W, Waldbronn, Germany), and hydrogen
(2ml/min constant flow) as carrier gas was used. One ul of a sample was injected
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splitless at an initial oven temperature of 50 °C. After 1 min, the splitting valve
was opened and the temperature gradually increased by 10 °C/min until it
reached a final temperature of 310 °C, which was kept constant for 50 min. To
ensure the consistency of the analyses, GC runs were performed regularly with a
synthetic alkane standard mixture. Structure elucidation of individual compounds
was performed with an HP (Hewlett Packard) 6890 Series gas chromatograph
connected to a mass selective detector (GC-MS; Quadrupole 5972, Agilent,
Waldbronn, Germany). Helium was used as carrier gas (1.5 ml/min constant flow).
The temperature program was the same as described above. The absolute and
relative amounts of these compounds were determined by using Agilent
ChemStation software (Agilent, Waldbronn, Germany). Structure assignments
were carried out by comparison of mass spectra and retention times of natural
products with corresponding data from synthetic reference samples using the
NIST database and a database of the Institute of Evolutionary Ecology and
Conservation Genomics at the University of Ulm, following previous work>4:35,
Peak identities across different runs were confirmed by GC-MS.

To estimate relative proportions for further downstream analyses, we only
used CHCs that were found in all samples. Further, we divided the absolute
amounts of individual compounds by the sum of the absolute amounts of all
compounds and multiplied by 100. With these CHC compounds, we created a PCA
using the function “prcomp” (“ggfortify” package>®) to check if colonies and/or
populations form distinct clusters. Further, we conducted a hierarchical cluster
analysis with the CHC data using the function “agnes” and Ward’s minimum
variance method (“cluster” package>’). We used the values of the first PCA in the

multinomial regression.

One-on-one aggression tests

We conducted one-on-one aggression tests within each population on July 23
2018 to determine if the colonies displayed the expected behaviour (i.e.,
aggressive and non-aggressive). We conducted standardised aggression tests? in
an air-conditioned room with constant 18 °C. For each aggression test (i.e., one
encounter), we randomly selected naive single workers from different colonies
from the same population and transferred to a small glass vial (1.4 cm inner
diameter) with Fluon-coated walls preventing workers from escaping. Only
workers actively running outside in the arena were selected, which likely were
foragers3l, We added a worker from one colony first and then the second worker.
In the next encounter, we changed the order of workers introduced to prevent
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any effect of adding workers to the vial. We conducted five encounters for each
colony combination to account for behavioural variation>8. Each encounter lasted
180 s and was filmed using high-definition cameras (Handycam HDR-XR 155;
HDRPJ810E, Sony, Tokyo, Japan). As workers might have been agitated after
being transferred to the vials, the first 10 seconds of each encounter were
regarded as an acclimatisation time and were thus excluded from further
analyses?30.31 The assay conductors were not blind to the colony’s origin.

We further conducted one-on-one aggression tests between populations
between July 25t and 28t 2018 following the approach described above. Within
10 minutes after the end of the aggression test, we separated the workers if
fighting, transferred them individually to 1.5 ml tubes, and snap-froze them using
liquid nitrogen. This procedure ensured that no early genes were expressed,
which can start after 15 minutes>9. At this point, the colony origin of the workers
was unknown, but we later identified the colony identity using microsatellite
analysis (see section below “Microsatellite genotyping for reference workers”).
Additionally, we conducted within-colony aggression tests on July 27th 2018 to
test if workers behaved peacefully, which was our expectation.

One-on-one aggression analysis and worker selection for sequencing
For an initial screening of the aggression test, we noted the behaviour of both
workers every ten seconds as “aggressive”, “neutral”, or “peaceful” while
conducting the aggression tests. Based on this initial screening, we selected 112
videos for a detailed analysis. From these videos, we examined the behaviour of
each worker in slow-motion, and classified the behaviour of both workers second
by second using the following scoring scale®?: (—4) trophallaxis, (—3),
allogrooming, (—2) antennation, (—1) being next to each other without contact,
(0) ignoring, (1) avoiding, (2) mandible threatening, (3) fighting without gaster
flexion, (4) fighting with gaster flexion, and (5) killing. The observer of the videos
was blind to the origin of the colonies. Moreover, an aggression index Af! was
calculated as detailed in Krapf et al. (2023)°. For A/, the duration of each
behaviour was summed up and multiplied by its respective behaviour score (-4 to
+5). This value was divided by the total number of seconds with tactile
interactions recorded. Lastly, the arithmetic mean of the five replicates was
calculated.

Using this detailed analysis, we defined three behavioural states: workers that
‘started aggression’, workers that reacted aggressively’, or workers that ‘reacted
peacefully . For the aggressive states (started aggression; reacted aggressively),
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we used workers that displayed a scoring value of 3 and higher to ensure that
high aggression levels were used. Based on these three behavioural states, we
selected 109 workers for whole-genome sequencing (started aggression = 43
workers, reacted aggressively = 35 workers, reacted peacefully = 31 workers;
see Tab. S1 for population and colony details) and, of those, we selected 85
workers for transcriptomic analyses (started aggression = 31 workers, reacted
aggressively = 29, reacted peacefully = 25). The additional 24 workers selected
for whole-genome sequencing originated from the non-aggressive and
polygynous population MQ-NS. They were used to account for multiple queens
and reliably calculate within-colony relatedness and estimate queen numbers.

DNA- and RNA-extractions and whole-genome and whole-transcriptome
sequencing

For whole-genome sequencing of samples, we cut off the mesosoma and
abdomen from the head of each ant using sterile scalpels (Fig. P1). We used the
mesosoma and abdomen for DNA extractions (Nsamples=109) and the head for
RNA extractions (Nsamples=85). We extracted DNA using the QiAmp Micro DNA Kit
(Qiagen, Hilden, Germany). For this, we transferred the mesosoma and abdomen
of each worker to a sterile tube and submerged it into liquid nitrogen. We then
ground the mesosoma and abdomen using disposable pestles. The extraction
followed the manufacturer’s protocol except for the dilution, which was
conducted twice, as follows: the first elution was done with 50 ul dH,0 for whole-
genome sequencing and the second elution with 30 ul dH,0 for microsatellite
genotyping to determine the colony affiliation (see section below “Microsatellite
genotyping to identify colony identity”).

We extracted RNA from the heads of 85 workers using the Nucleospin RNA Kit
(Macherey-Nagel, Duren, Germany) following the manufacturer’s protocol. For
this, we transferred the head of each worker to a sterile tube, submerged the
tube into liquid nitrogen, and grinded the head using disposable pestles. The
subsequent extraction followed the manufacturer’s protocol except for the
dilution: RNA was eluted in 40 ul RNAse-free dH20 provided by the manufacturer.

We conducted all DNA- and RNA-extraction steps under sterile conditions in a
laminar flow hood. DNA and RNA extracts were stored at -70 °C until being
shipped for library preparation and whole-genome and -transcriptome
sequencing outsourced to a commercial provider (IGATech,

http://igatechnology.com/). Each worker was sequenced with 125-bp paired-end
sequencing for both DNA- and RNA extractions on HiSeg2500.
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Microsatellite genotyping to identify colony identity

We conducted microsatellite genotyping to assess the colony identity of workers
used in aggression tests. First, we genotyped 12 reference workers from each
colony (i.e., known colony identity) using eight microsatellite loci®39. For this, we
extracted DNA using the Sigma GenElute extraction kit following the
manufacturer’s protocol, except for eluting in 50 ul. PCR for genotyping was done
in 5 pL reaction volume with 0.5 pL template DNA, 2 x Rotorgene Master Mix
(Qiagen, Hilden, Germany), 0.01 uM M13 tailed locus-specific forward primer, 0.1
MM fluorescent-labelled M13 primer, 0.1 uM untailed specific reverse primer, and
1.79 pL dH,0 on a UnoCycler 1200 (VWR, Radnor, USA). Cycling conditions were
94 °C for 5 min followed by 35 cycles at 94 °C for 30 s, 60 °C for 1 min, 72 °C for
45 s, and a final extension at 68 °C for 20 min. Fragment analysis was carried out
on an ABI3730XL genetic analyser (Applied Biosystems, Foster City, USA) by a
commercial provider (Comprehensive Cancer Center DNA Sequencing &
Genotyping Facility, University of Chicago, USA). Microsatellites were genotyped
using GeneMarker V.3.0.1 (SoftGenetics, State College, PA, USA).

Following the same procedure, we genotyped workers from the aggression
tests and reliably assigned the colony identity before shipping the samples to the
commercial provider IGA for sequencing. Based on the genotypes of known
colony identities, we calculated the probability of colony affiliations using the
software GeneClass2%2. GeneClass2 uses multilocus genotypes to select or
exclude populations as origins of individuals. To find colony affiliations, we chose
the Bayesian method by Rannala & Mountain (1997)63 as the computation
criteria, and the assignment threshold of the scores was 0.05. Further, we
calculated within-colony relatedness based on the genotypes following Queller
and Goodnight algorithm®* and additionally, the number of queens following
Pamilo (1991)6>.

Analysing whole-genome and whole-transcriptome sequences
For both DNA and RNA files, we conducted the same analysis approach. Initial
quality control of raw reads was conducted using FastQC

(https://www.bioinformatics. raham.ac.uk/projects/fastqc/) and MultiQC
(https://segera.io/multiqc/). We trimmed adapters, duplicates, and contaminants

using a “kraken” database and “bbduk” (“bbtools”,
https: rceforge.net/project map/). We merged trimmed paired-end files
into single files and mapped single files against the 7etramorium alpestre
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reference genome®® using “bbmap” (bbtools) by applying quality trimming on
both sides. For mapping, we indexed the files and quality-trimmed them using
“bbmap” (minid=0.9, k=13). We called single nucleotide polymorphisms (SNPs)
using the “callvariants” function from “bbtools” using the default settings except
for ploidy=2. For variant calling, we first called variants in an initial VCF file.
Second, we calculated the true equality and then recalibrated them using the
initial VCF file. Third, we created an unfiltered VCF file. In this unfiltered VCF file,
we identified 1,249,705 and 312,297 SNPs for whole-genome sequences and
whole-transcriptome sequences, respectively. We further filtered this unfiltered
VCF file using a minimum coverage of 128, a minimum number of sequences of 4
with the alternative allele, a minimum mapping quality of 50, and including
linkage-disequilibrium (LD) pruning. After filtering, 184,145 and 69,191 SNPs
were kept in the final whole-genome and whole-transcriptome VCEF file,
respectively.

Using the VCF file of the whole-genome data, we calculated the heterozygosity
and Weir and Cockerham's Fst and created an LD-pruned PCA using VCFtools®’.
We further calculated the within-colony relatedness using the “relatedness”
function in VCFtools®” using the method of Manichaikul et al. (2010)68. We then
comapred the within-colony relatedness from whole-genome data with the within-
colony relatedness from microsatellite genotyping to assess concordance of
values (Tab. S3).

Genome-wide mixed-model association (GEMMA) analysis using whole-
genome sequences

We conducted a GEMMAG®9 analysis using whole-genome sequence data to
determine if the behavioural states were associated with SNPs in the VCF. Before
the analysis, we excluded duplications in the VCF to reduce the bias of
emphasising duplications. We used this VCF file without duplications to create a
bimbam file using a custom-made Python script. After calculating the bimbam
file, we calculated a centred relatedness matrix using “gemma”, which was used
in the subsequent GEMMA analysis. In the GEMMA analysis, a phenotype list
detailing the behavioural states of workers, a bam list, and an LD-covariance file
were used. GEMMA results were visualised using Manhattan plots created in R
using the function “Manhattan” (“ggman” package’?). We inspected genomic
SNPs above the suggestive line by using them a PCA created with the function
“prcomp” (“ggfortify” package>®) to check whether alleles clustered together. For
this PCA, we dummy-coded individuals that were homozygous for the reference
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allele of the respective genes as 0/0 and individuals that were heterozygous for
the reference alleles as 0/1. We did not find any individual that was homozygous
for the alternative allele. Further, we conducted a Pearson’s Chi-squared test for
count data with simulated p-value and 2000 Monte Carlo replicates to calculate
the p-values. The count data represented the number of counts of all individuals
for being homozygous or heterozygous for the reference allele for the three
behavioural states. The idea was to check if individuals that were homozygous or
heterozygous for the reference allele were more or less frequently observed in
one of the three behavioural states.

Differential gene expression and gene-enrichment analysis

Differential gene expression

The expression counts of each individual stemming from a newly created
annotation (for details, see the section “ 7etramorium alpestre annotation” in the
Supplementary Materials and Methods) were merged using a customised R script.
Using this merged data set, we analysed the expression counts of all individuals
(“DESeq2"” package’l). For this, we created a DESeqDataSet object to compare
the expression of the behavioural states in a pairwise manner. The three
behavioural comparisons were: started aggression vs reacted aggressively,
started aggression vs reacted peacefully, and reacted aggressively vs reacted
peacefully. As a pre-filtering step, we only kept rows that had at least 10 counts
in total, thus excluding rows (i.e., genes) with fewer counts than 10. Next, we
assessed the data quality of each sample using a pheatmap (“pheatmap*
package’?). Of the 85 samples, we excluded three due to low quality, yielding 82
samples for subsequent analysis. We conducted a differential gene expression
analysis with these 82 samples based on the Negative Binomial (i.e., Gamma-
Poisson) distribution and using the default settings. We created volcano plots for
each behavioural comparison exported the results as table with a log fold change
threshold of zero and using a of 0.05-Benjamini-Hochberg correction (“result”
function; DESeq2 package; “false-discovery rate”, FDR). We created such result
tables for all three comparisons and up-regulated as well as down-regulated
genes separately and used them in subsequent analyses. Such tables included
gene names, log,fold values, p-values, and FDR-corrected p-values for multiple
testing. We further queried gene names in FlyBase (release FB2025_04) to obtain
information on gene function. In subsequent gene-enrichment analyses and
multinomial logistic regression analyses, we only used genes with a known (i.e.,
annotated) gene name.
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Gene-enrichment analyses

For the three behavioural comparisons started aggressionvs reacted aggressively,
started aggression vs reacted peacefully, and reacted aggressively vs reacted
peacefully, we conducted a gene enrichment analysis in g:Profiler
(https://biit.cs.ut. rofiler t), a web server for functional gene-enrichment
analysis. We only used known (i.e., annotated) genes with an FDR-adjusted p-value
lower than 0.05 (Tab. S5). For each behavioural comparison, we conducted a query
with an unordered list of genes based on the log,fold changes. We selected
Drosophila melanogaster as the organism to match the query gene list. Further,
we created Venn diagrams using the behavioural-comparison genes for the
annotated and all genes in R using the function “ggvenn” (“ggvenn” package’3).
This analysis allowed checking whether the same genes are up- or down-regulated
in several comparisons.

Microbiome DNA extraction and marker gene sequencing

To test whether the microbiome influenced the three behavioural states, we
conducted 16S rRNA gene sequencing. Due to a limited availability of samples, we
used 49 workers from two populations: Specifically, we selected four workers each
from two colonies of the single-queened and aggressive population SQ-A (colonies
SQ-A5 and SQ-A6) and from two of the single-queened and non-aggressive
population SQ-N (colonies SQ-N1 and SQ-N6; SQ-N6 with five workers) and from
each behavioural state. This resulted in using 16 workers that started aggression,
16 that reacted aggressively, and 17 that reacted peacefully (Tab. S1). To test if
the microbiome changed during laboratory maintenance, we selected 16 additional
workers (4 workers each from the colonies SQ-A5, SQ-A6, SQ-N1, and SQ-N6) as
control. These workers were immediately frozen after fieldwork and did not
experience any laboratory maintenance.

Before the extractions, we sterilised the surface of whole workers by transferring
individual workers for 15 s into Eppendorf tubes filled with 100 pl 5% bleach and
then for 15 s into Eppendorf tubes filled with 100 ul phosphate-buffered saline
solution (PBS; 137 mM NaCl, 2.7 mM KCI, 10 mM Na2HPO4, and 1.8 mM KH2P04)74,

For the 16 control workers, we extracted DNA using the QlAamp DNA Mini kit
(Qiagen, Hilden, Germany) and eluted twice each time with 30 ul of the elution
buffer from the kit. For the remaining 49 workers, we dissected the heads from the
mesosoma and gaster using a sterile scalpel. For microbiome analyses, we
extracted DNA from the mesosoma and gaster using the QlAamp DNA Mini Kit. To
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determine colony affiliation using microsatellite genotyping (for details, see
“Microsatellite genotyping of reference workers” above), we extracted DNA of the
head using the DNEasy Blood and Tissue Kit (Qiagen, Hilden, Germany). We
extracted DNA following the manufacturer’s protocol except for the elution: DNA
was eluted twice each time with 30 pl of the elution buffer from the kit. We
conducted all steps before and during the extraction under sterile conditions in a
laminar flow hood. High-quality DNA extracts were sent to Novogene (Cambridge,
United Kingdom) for marker gene sequencing on a NovaSeq6000 machine
(Illumina, San Diego, CA, United States). The universal primer pair for bacteria 515F
(5'-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5'-GGACTACHVGGGTWTCTAAT-3’)
was used to target the V4 region of the 16S rRNA gene using a 2x250 bp approach.

Analysis of 16S rRNA gene-sequencing data

We merged the raw reads into contigs using flash” v.1.2.775. We used Qiime v.1.7.0
for quality filtering following the standard operating procedures. We used SILVA
v.138 as a reference database and to detect chimeric sequences by the UCHIME
algorithm, which we removed from the data. Sequences were clustered into OTUs
based on a =97% similarity threshold. We converted the raw data to a phyloseq
object (“phyloseq” package’®) and rarefied to the smallest sample size, after
removing the sample Nu ctrl 153a as an outlier. We conducted principal
coordinate analyses (PCoA) based on populations and behavioural states and
visualized the data (“ampvis2” package)’’. In total, we found 22,215 OTUs after
rarefaction. We further calculated the frequency of the four most frequent bacterial
genera as well as for four additional bacteria genera, Acetobacter, Enterococcus,
Fusobacterium, Megamonas, and the orders Rhizobiales and Entomoplasmatales.
Acetobacter, and Enterococcus have been associated with aggression in
Drosophila melanogastert, Fusobacterium and Megamonas have been associated
with aggression and non-aggression in dogs!22l, and Rhizobiales and
Entomoplasmatales have been associated with aggression in leaf-cutting antsi3,
Entomoplasmatales were not found in our data set.

Using the bacterial OTU genera mentioned above, we selected OTUs that had a
frequency of at least 100 across the behavioural states (N=119), thus focusing on
the most frequent OTUs and restricting the analysis to 119 OTUs. With these, we
conducted a sliding-window approach with multinomial logistic regressions
(function “multinom”, “nnet” package’8). A multinomial regression allows using
more than one categorical variable as response variables (here, the three
behavioural states). In the sliding-window approach, we created individual
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models that tested 20 OTUs simultaneously in a multinomial regression. Briefly,
the first model used OTUs 1 to 20, the second model OTUs 2 to 21, etc. To
evaluate the model fit and calculate p-values and log-likelihood tests, we
conducted the same methods as described in the section “Combining SNPs,
DEGs, CHCs, relatedness, and environmental variables counts in a multinomial
regression”.

In each model (N=119), we used the behavioural state started aggression as
the baseline. Manually checking 119 model fits and results was not efficient, so
we created an R (version 4.3.079) script to extract model fits and model p-values
for the different OTUs. The script also counted how often OTUs were significantly
influencing the behavioural states and thus allowed checking if the same OTUs
influenced the behavioural states more or less frequently. Our rationale was that
if one or a few OTUs are present in many or all models, then these OTUs likely
have a higher impact on the behavioural states than OTUs with a low frequency.
If, however, OTUs are only counted a few times, they have likely arisen due to
chance and may represent artefacts. From these models, we extracted the
significant OTUs and counted their frequency across the models.

Across these models, the most frequent OTUs (NoTys=58 with a frequency =10)
included the genera Bacteroides (relative percentage across the 58 models,
25%), Lactobacillus (9%), Prevotella (43%), Pseudomonas (17%), the order
Rhizobiales (4%), and the genus Fusobacterium (1%). For these gut bacteria, we
noted the OTU frequency in each behavioural state and the control. From the 58
OTUs, we excluded 40 OTUs (five because the frequency was significantly higher
or lower than in the control, 16 OTUs because the count of the control was higher
as the highest number of counts of one of the behaviours, six OTUs because the
counts were evenly distributed across all behavioural states, five because the
counts were less than 10 in one of the behavioural states, seven OTUs because
the counts of the control was similar as the counts of the behavioural states, and
one because the counts were not different between the control and the
behavioural states) yielding 18 OTUs for further analyses, namely three
Bacteroides spp., three Lactobacillus spp., nine Prevotella spp., three
Pseudomonas spp., and one Rhizobiales sp.

With this set of 18 OTUs, we assessed whether the counts differed between the
behavioural states. For this, we conducted a generalised linear model with these
count data (response = count; explanatory variable = behavioural states;
Poisson-distributed) and assessed the pairwise comparisons (“emmeans”
package; Tukey corrected for multiple testing). Nine OTUs revealed significant
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results and were further discussed, while others were non-significant or revealed
inconsistent results (/.e., reacted aggressively higher than the other behavioural
states). We could not analyse the microbiome data together with SNPs and DEGs
because no samples for the population MQ-N were available for the microbiome

analysis.

Environmental variables used in the multinomial regression analyses
For each colony, we estimated a standardised air temperature (TAS) as a rough
measure of the colonies’ thermal niche®?, Following the logic of Seifert and
Pannier (2007)8, TAS was calculated for a sampling site as the mean air
temperature of the period from May 1st to August 31st averaged over the years
1961 to 1990 of the nearest three meteorological stations (data provided by
Klimaabteilung der Zentralanstalt fur Meteorologie und Geodynamik (1996),
Vienna, Austria). The data were corrected for an altitudinal decrease in
temperature of 0.661 °C per 100 m according to the equation of Seifert and
Pannier (2007):

TAS= -0.694xLAT+0.078 xLON-0.00661 xALT+52.20, (1)

where TAS is the predicted standardised air temperature in °C, LAT and LON
denote the geographical latitude and longitude in decimal format, respectively,
and ALT is the altitude above sea level in metres.

From the WordIClim dataset3>, we downloaded environmental variables from
the years 1970 to 2000 and extracted site-specific values using the “extract”
function (“raster” package8?). In particular, we selected data on mean annual
precipitation, precipitation of the warmers quarter, mean annual temperature,
and the maximum temperature of the warmest month both as temperature and
precipitation affect the colonies’ environment and higher temperatures promote
aggression in this species®. Further, we retrieved soil nitrogen values for each
site from the European LUCAS topsoil dataset83. We used these variables in
multinomial regression analyses (described in the next paragraph) to test if the
environment is associated with the behavioural states. We recently found such an
association in this ant, where higher temperature and nitrogen values were
positively associated with aggression®.

Combining SNPs, DEGs, CHCs, relatedness, and environmental variables
counts in a multinomial regression

In the multinomial logistic regression, we integrated principal component 1 of the
CHC analysis, three SNPs, eight gene expression counts, and colony and
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environmental variables to assess whether they were associated with the three
behavioural states (started aggression, reacted aggressively, reacted peacefully).
Although CHCs, SNPs, gene expression counts, and environmental variables
represent distinct biological and abiotic entities, they have high-dimensional
features measured across the same samples and thus share a common statistical
role. Moreover, a multinomial regression provides the opportunity to use a unified
framework to quantify their joint contribution to categorical outcomes while
preserving interpretability.

In total, we tested 24 models (Tab. S9). Models 1-8 used expression counts of
DEGs that were observed in both behavioural comparisons (Fig. 3B; Tab. S3
highlighted cells). Models 9-16 used expression counts of DEGs that were up-
regulated in the behavioural comparisons. Models 17-24 used expression counts
of DEGs that were down-regulated in the behavioural comparisons. Fitting
separate models with increasing number of input variables allowed us to assess if
the input variables influence the behavioural states in combination or separately.
For example, if some genes are up-regulated in workers that reacted
aggressively but other genes are up-regulated in workers that reacted peacefully,
using these genes in combination may lead to false conclusions.

In detail, we tested the following models, namely “intercept-only” models
(Modelsl, 9, 17), models with all three SNP states only (Models 2, 10, 18), models
with DEGs that had a log,fold value of at least 0.5 (Models 3, 11, 19), models
with all three SNP states and DEGs (log,fold of at least £0.5; Models 4, 12, 20),
models with the within-colony relatedness values, standardised air temperature,
the first PC from a CHC PCA, site-specific soil nitrogen values, mean annual
precipitation, precipitation of the warmest quarter, mean annual temperature,
and maximum temperature of the warmest month (“colony and environmental
variables”; Models 5, 13, 21), models with all three SNP states and the colony and
environmental variables (Models 6, 14, 22), models with DEGs (log,fold of at least
+0.5) and colony and environmental variables (Models 7, 15, 23), and, lastly,
models with all above-mentioned variables (Models 8, 16, 24).

We compared the model fits using the “anova” function (basic stats package;
“Chi-square test”). We further calculated the Akaike Information Criterion for
small sample sizes (AlCc) of the models (excluding the intercept-only model)
using the “aictab” function (“AlCcmodavg” package®4) and the models with the
lowest AAICc (deltaAlCc) values represented the best fitting models. Additionally,
we calculated a goodness of fit measure for these models by comparing the fit of
observed and expected values. To further test if the used variables are
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significantly influencing the behavioural states, we manually calculated the p-
values using a two-tailed Wald Z test. We used the behavioural state started
aggression as baseline in the logistic regression.

To subsequently test if the behavioural states differ from each other, we
compared their means in a pairwise manner. For this, we calculated the marginal
means between the behavioural states using the functions "emmeans" and
“contrast” (“emmeans” package). These post-hoc tests compared the
behavioural states and allowed conducting hypothesis tests to determine
whether the differences were statistically significant. We also calculated two
pseudo coefficients of determination (R2, “Nagelkerke” and “McFadden”) to check
how much of the variation is explained by the independent variables. As we used
multinomial regressions, the pseudo-R2 values were only approximated. We
further assessed the significance of the independent variables individually using
a likelihood ratio test “Irtest” (“Imtest” package®>). This test drops the focal
variable in the model to assess its impact on the model (i.e., it compares a focal
model with the same model by excluding the targeted independent variable). If
the model differs significantly, the focal variable is a dominant variable in the
model.

Data Availability
All code and datasets generated and/or analysed in the study will be made
publicly available alongside the publication
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Fig. 1 Sampling map and schematic overview of the assays. A) Sampling area in
Central Europe. The populations were defined based on preliminary data and aggression
assays conducted in this study: Population SQ-N in green colours represents single-
queened, non-aggressive colonies. Population SQ-A in orange represents single-queened,
aggressive colonies. Population MQ-N in blue represents multiple-queened, non-
aggressive, potentially supercolonial colonies. The inset in A) shows the three populations
in closer detail and the linear distances between all three populations. B) Schematic
overview of the assays, created in BioRender by Krapf, P. (2025),
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https://BioRender.com/ecg4a2x. Note: N, = nitrogen; CHC = cuticular hydrocarbons; GC-
MS = Gas-Chromatography Mass-Spectrometry
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Fig. 2. Results of the aggression tests, PCA of the CHCs, PCA of the LD-pruned
SNPs, and within- and between colony relatedness. A) Combined boxplots, violin-,
and scatter plots displaying the three behavioural states for the three populations along
the behaviour index Al, which denotes aggressive (5-1), neutral (0), and peaceful (-4 to -
1) behaviour. Workers from all three behavioural states started aggression, reacted
aggressively, and reacted peacefully. Based on their behaviours, we selected workers for
whole-genome and whole-transcriptome sequencing. Numbers above colony names
represent the sample size for each group. Only workers used in the transcriptomic data
are displayed. Note: SQ-N = single-queened and non-aggressive, MQ-N = multiple-queened and
non-aggressive colonies. B) PCA using 63 cuticular hydrocarbon (CHC) compounds that
were found in all analysed workers (Nworkers=44). The three populations SQ-A, SQ-N, and
MQ-N differ to some extent in their CHC bouquet on the first axis (45.1%). However, no
cluster or complete separation is apparent. C) PCA of linkage-disequilibrium (LD)-pruned
SNPs from whole-genome sequence data (Nyorkers=109). The first axis (4.0%) separates
the supercolonial population MQ-N from the aggressive and non-aggressive populations
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1209

SQ-A and SQ-N. The second axis (2.3%) separates the aggressive population SQ-A
(bottom-left panel of the PCA) from the non-aggressive population SQ-N (upper-left panel
of the PCA). D) The within- and between-rest relatedness was calculated following the
Manichaikul et al. (2010)%8 relatedness using genomic SNP data (Nworkers=109). Each
square represents a pairwise comparison between all samples. A dark red colour of a
square indicates a close relatedness between two samples, while a dark blue colour
indicates a distant/loose relatedness.
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1212 bacterial OTU counts, results of the multinomial logistic regression, and

1213 log,fold change of the DEGs. A) Principal Component Analysis (PCA) of the genomic
1214  single nucleotide polymorphisms (SNP) states from the three genes that were above the
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suggestive line in the Genome-wide Efficient Mixed Model Association (GEMMA) analysis
(see also Manhattan Plot, Fig. S4, (Nworkers=109). In the PCA, individuals that are
homozygous for the reference allele of the respective genes are represented as 0/0 and
individuals that are heterozygous for the reference alleles are 0/1. The three behavioural
states started aggression, reacted aggressively, and reacted peacefully are coloured in
red, yellow, and purple, respectively. In the PCA, the behavioural state started aggression
displays allelic combinations that are not observed in the other two behavioural states. B)
Venn diagrams of 57 differentially-expressed genes (DEGs) which were significantly
down- and up-regulated (FDR-corrected for multiple testing with <0.05) with known gene
names based on Flybase (https://flybase.org/, retrieved 10.04.2025). Dark colours
represent down-regulated genes and light colours up-regulated genes. C) Counts of nine
operational taxonomic units (OTU) that were associated with the behavioural states in the
multinomial logistic regression. Significant differences in the counts are represented with
asterisks, *** = <0.001; ** = <0.01; * = <0.05. D) Results of the multinomial logistic
regression displaying the logistic odds-ratio values for each SNPs and DEGs separately
including the Chi-squared and p-values from the Likelihood Ratio Test (LRT) to assess the
global significance of the SNPs or DEGs on the behaviour. E) Log,fold change for the
DEGs that we identified as significant in the multinomial logistic regression shown for the
comparison of started aggression vs reacted aggressively and started aggression vs
reacted peacefully. The comparison reacted aggressively vs reacted peacefully did not
yield any significant up- or down-regulated genes and no data are now shown.
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